An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model
Thin film flow is an important theme in fluid mechanics and has many industrial applications. These flows can be observed in oil refinement process, laser cutting, and nuclear reactors. In this theoretical study, we explore thin film flow of non-Newtonian Johnson–Segalman fluid on a vertical belt in...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-02, Vol.2022, p.1-17 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Qayyum, Mubashir Ismail, Farnaz Ali Shah, Syed Inayat Sohail, Muhammad El-Zahar, Essam R. Gokul, K. C |
description | Thin film flow is an important theme in fluid mechanics and has many industrial applications. These flows can be observed in oil refinement process, laser cutting, and nuclear reactors. In this theoretical study, we explore thin film flow of non-Newtonian Johnson–Segalman fluid on a vertical belt in fractional space in lifting and drainage scenarios. Modelled fractional-order boundary value problems are solved numerically using the homotopy perturbation method along with Caputo definition of fractional derivative. In this study, instantaneous and average velocities and volumetric flux are computed in lifting and drainage cases. Validity and convergence of homotopy-based solutions are confirmed by finding residual errors in each case. Moreover, the consequences of different fractional and fluid parameters are graphically studied on the velocity profile. Analysis shows that fractional parameters have opposite effects of the fluid velocity. |
doi_str_mv | 10.1155/2022/1019810 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2636147884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2636147884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-87c3d4f0dae7602f2fc1f08045f74341606ce524b8ba00171b0adf6809f75fea3</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQh4MoWKs3H2DBo8bO_kvSYxFjlZYKVvAWNsmuSdlk425C6c138A19EhPSs6cZZj5-zHyed43hHmPOZwQImWHA8wjDiTfBPKA-xyw87XsgzMeEfpx7F87tAAjmOJp4-0WNFk2jy0y0pamRUWhpKtOa5oBepW07m46LtWwLk6PWoNiKbBgJ7W9sLi3aFmWN4lJXKNZmP0S0hUQvpqidqX-_f97kp9CV6BndlTlam1zqS-9MCe3k1bFOvff4cfuw9Febp-eHxcrPKA1bPwozmjMFuZBhAEQRlWEFETCuQkYZDiDIJCcsjVIBgEOcgshVEMFchVxJQafezZjbWPPVSdcmO9PZ_naXkIAGvZwoYj11N1KZNc5ZqZLGlpWwhwRDMqhNBrXJUW2P3454_3gu9uX_9B9n53lj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2636147884</pqid></control><display><type>article</type><title>An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Qayyum, Mubashir ; Ismail, Farnaz ; Ali Shah, Syed Inayat ; Sohail, Muhammad ; El-Zahar, Essam R. ; Gokul, K. C</creator><contributor>Riaz, Arshad ; Arshad Riaz</contributor><creatorcontrib>Qayyum, Mubashir ; Ismail, Farnaz ; Ali Shah, Syed Inayat ; Sohail, Muhammad ; El-Zahar, Essam R. ; Gokul, K. C ; Riaz, Arshad ; Arshad Riaz</creatorcontrib><description>Thin film flow is an important theme in fluid mechanics and has many industrial applications. These flows can be observed in oil refinement process, laser cutting, and nuclear reactors. In this theoretical study, we explore thin film flow of non-Newtonian Johnson–Segalman fluid on a vertical belt in fractional space in lifting and drainage scenarios. Modelled fractional-order boundary value problems are solved numerically using the homotopy perturbation method along with Caputo definition of fractional derivative. In this study, instantaneous and average velocities and volumetric flux are computed in lifting and drainage cases. Validity and convergence of homotopy-based solutions are confirmed by finding residual errors in each case. Moreover, the consequences of different fractional and fluid parameters are graphically studied on the velocity profile. Analysis shows that fractional parameters have opposite effects of the fluid velocity.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/1019810</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Boundary conditions ; Boundary value problems ; Calculus ; Control theory ; Drainage ; Fluid flow ; Fluid mechanics ; Gravity ; Industrial applications ; Laser beam cutting ; Mathematical models ; Non-Newtonian fluids ; Nuclear reactors ; Parameters ; Perturbation methods ; Thin films ; Velocity ; Velocity distribution</subject><ispartof>Mathematical problems in engineering, 2022-02, Vol.2022, p.1-17</ispartof><rights>Copyright © 2022 Mubashir Qayyum et al.</rights><rights>Copyright © 2022 Mubashir Qayyum et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-87c3d4f0dae7602f2fc1f08045f74341606ce524b8ba00171b0adf6809f75fea3</citedby><cites>FETCH-LOGICAL-c337t-87c3d4f0dae7602f2fc1f08045f74341606ce524b8ba00171b0adf6809f75fea3</cites><orcidid>0000-0002-7471-8088 ; 0000-0002-1490-0339 ; 0000-0002-6701-5640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Riaz, Arshad</contributor><contributor>Arshad Riaz</contributor><creatorcontrib>Qayyum, Mubashir</creatorcontrib><creatorcontrib>Ismail, Farnaz</creatorcontrib><creatorcontrib>Ali Shah, Syed Inayat</creatorcontrib><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>El-Zahar, Essam R.</creatorcontrib><creatorcontrib>Gokul, K. C</creatorcontrib><title>An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model</title><title>Mathematical problems in engineering</title><description>Thin film flow is an important theme in fluid mechanics and has many industrial applications. These flows can be observed in oil refinement process, laser cutting, and nuclear reactors. In this theoretical study, we explore thin film flow of non-Newtonian Johnson–Segalman fluid on a vertical belt in fractional space in lifting and drainage scenarios. Modelled fractional-order boundary value problems are solved numerically using the homotopy perturbation method along with Caputo definition of fractional derivative. In this study, instantaneous and average velocities and volumetric flux are computed in lifting and drainage cases. Validity and convergence of homotopy-based solutions are confirmed by finding residual errors in each case. Moreover, the consequences of different fractional and fluid parameters are graphically studied on the velocity profile. Analysis shows that fractional parameters have opposite effects of the fluid velocity.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Calculus</subject><subject>Control theory</subject><subject>Drainage</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Gravity</subject><subject>Industrial applications</subject><subject>Laser beam cutting</subject><subject>Mathematical models</subject><subject>Non-Newtonian fluids</subject><subject>Nuclear reactors</subject><subject>Parameters</subject><subject>Perturbation methods</subject><subject>Thin films</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9Kw0AQh4MoWKs3H2DBo8bO_kvSYxFjlZYKVvAWNsmuSdlk425C6c138A19EhPSs6cZZj5-zHyed43hHmPOZwQImWHA8wjDiTfBPKA-xyw87XsgzMeEfpx7F87tAAjmOJp4-0WNFk2jy0y0pamRUWhpKtOa5oBepW07m46LtWwLk6PWoNiKbBgJ7W9sLi3aFmWN4lJXKNZmP0S0hUQvpqidqX-_f97kp9CV6BndlTlam1zqS-9MCe3k1bFOvff4cfuw9Febp-eHxcrPKA1bPwozmjMFuZBhAEQRlWEFETCuQkYZDiDIJCcsjVIBgEOcgshVEMFchVxJQafezZjbWPPVSdcmO9PZ_naXkIAGvZwoYj11N1KZNc5ZqZLGlpWwhwRDMqhNBrXJUW2P3454_3gu9uX_9B9n53lj</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Qayyum, Mubashir</creator><creator>Ismail, Farnaz</creator><creator>Ali Shah, Syed Inayat</creator><creator>Sohail, Muhammad</creator><creator>El-Zahar, Essam R.</creator><creator>Gokul, K. C</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7471-8088</orcidid><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid><orcidid>https://orcid.org/0000-0002-6701-5640</orcidid></search><sort><creationdate>20220223</creationdate><title>An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model</title><author>Qayyum, Mubashir ; Ismail, Farnaz ; Ali Shah, Syed Inayat ; Sohail, Muhammad ; El-Zahar, Essam R. ; Gokul, K. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-87c3d4f0dae7602f2fc1f08045f74341606ce524b8ba00171b0adf6809f75fea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Calculus</topic><topic>Control theory</topic><topic>Drainage</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Gravity</topic><topic>Industrial applications</topic><topic>Laser beam cutting</topic><topic>Mathematical models</topic><topic>Non-Newtonian fluids</topic><topic>Nuclear reactors</topic><topic>Parameters</topic><topic>Perturbation methods</topic><topic>Thin films</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qayyum, Mubashir</creatorcontrib><creatorcontrib>Ismail, Farnaz</creatorcontrib><creatorcontrib>Ali Shah, Syed Inayat</creatorcontrib><creatorcontrib>Sohail, Muhammad</creatorcontrib><creatorcontrib>El-Zahar, Essam R.</creatorcontrib><creatorcontrib>Gokul, K. C</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qayyum, Mubashir</au><au>Ismail, Farnaz</au><au>Ali Shah, Syed Inayat</au><au>Sohail, Muhammad</au><au>El-Zahar, Essam R.</au><au>Gokul, K. C</au><au>Riaz, Arshad</au><au>Arshad Riaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-02-23</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Thin film flow is an important theme in fluid mechanics and has many industrial applications. These flows can be observed in oil refinement process, laser cutting, and nuclear reactors. In this theoretical study, we explore thin film flow of non-Newtonian Johnson–Segalman fluid on a vertical belt in fractional space in lifting and drainage scenarios. Modelled fractional-order boundary value problems are solved numerically using the homotopy perturbation method along with Caputo definition of fractional derivative. In this study, instantaneous and average velocities and volumetric flux are computed in lifting and drainage cases. Validity and convergence of homotopy-based solutions are confirmed by finding residual errors in each case. Moreover, the consequences of different fractional and fluid parameters are graphically studied on the velocity profile. Analysis shows that fractional parameters have opposite effects of the fluid velocity.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/1019810</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7471-8088</orcidid><orcidid>https://orcid.org/0000-0002-1490-0339</orcidid><orcidid>https://orcid.org/0000-0002-6701-5640</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-02, Vol.2022, p.1-17 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2636147884 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library Open Access; Alma/SFX Local Collection |
subjects | Boundary conditions Boundary value problems Calculus Control theory Drainage Fluid flow Fluid mechanics Gravity Industrial applications Laser beam cutting Mathematical models Non-Newtonian fluids Nuclear reactors Parameters Perturbation methods Thin films Velocity Velocity distribution |
title | An Application of Homotopy Perturbation Method to Fractional-Order Thin Film Flow of the Johnson–Segalman Fluid Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A10%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Application%20of%20Homotopy%20Perturbation%20Method%20to%20Fractional-Order%20Thin%20Film%20Flow%20of%20the%20Johnson%E2%80%93Segalman%20Fluid%20Model&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Qayyum,%20Mubashir&rft.date=2022-02-23&rft.volume=2022&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/1019810&rft_dat=%3Cproquest_cross%3E2636147884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2636147884&rft_id=info:pmid/&rfr_iscdi=true |