Distance Measurement in Industrial Scenarios

3D reconstruction technology is one of the important technologies of computer vision. Compared with 2D data, 3D space contains more abundant information, including location information, local / global features and so on. It is of great significance to solve the problem of target distance measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-01, Vol.2166 (1), p.12065
Hauptverfasser: Liu, Hao, Liu, Chengzhao, Ma, Chenzhe, Zheng, Hantao, Xu, Jianglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12065
container_title Journal of physics. Conference series
container_volume 2166
creator Liu, Hao
Liu, Chengzhao
Ma, Chenzhe
Zheng, Hantao
Xu, Jianglong
description 3D reconstruction technology is one of the important technologies of computer vision. Compared with 2D data, 3D space contains more abundant information, including location information, local / global features and so on. It is of great significance to solve the problem of target distance measurement in a single image scene. It is difficult for neural network to predict hole size without image scale information. In this paper, we focus on the measurement of objects with little change in height in the image. We use the relationship between camera parameters and regional features and the internal relationship between regional features to solve the problems of three-dimensional parameter reconstruction and monocular image distance measurement and use the standard cross entropy loss to optimize the transformer model. This model has achieved good results on the sampled data set.
doi_str_mv 10.1088/1742-6596/2166/1/012065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635868259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635868259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2395-89e53e232982632afef7e81c93cd323e83e2386929eb47e8c999f187f80280233</originalsourceid><addsrcrecordid>eNqFUEtLAzEQDqJgrf4GF7y6bh5NdnKUarVQ8aCeQ0xnIaXNrsnuwX9vlpV6dBiYge8xzEfINaN3jAJUrF7wUkmtKs6UqlhFGadKnpDZETk97gDn5CKlHaUiVz0jtw8-9TY4LF7QpiHiAUNf-FCsw3ZIffR2X7w5DDb6Nl2Ss8buE179zjn5WD2-L5_LzevTenm_KR0XWpagUQrkgmvgSnDbYFMjMKeF2wouEEYQlOYaPxcZcVrrhkHdAOW5hZiTm8m3i-3XgKk3u3aIIZ802VCCAi51ZtUTy8U2pYiN6aI_2PhtGDVjNGZ82owBmDEaw8wUTVaKSenb7s_6P9UPTnhjQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635868259</pqid></control><display><type>article</type><title>Distance Measurement in Industrial Scenarios</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Hao ; Liu, Chengzhao ; Ma, Chenzhe ; Zheng, Hantao ; Xu, Jianglong</creator><creatorcontrib>Liu, Hao ; Liu, Chengzhao ; Ma, Chenzhe ; Zheng, Hantao ; Xu, Jianglong</creatorcontrib><description>3D reconstruction technology is one of the important technologies of computer vision. Compared with 2D data, 3D space contains more abundant information, including location information, local / global features and so on. It is of great significance to solve the problem of target distance measurement in a single image scene. It is difficult for neural network to predict hole size without image scale information. In this paper, we focus on the measurement of objects with little change in height in the image. We use the relationship between camera parameters and regional features and the internal relationship between regional features to solve the problems of three-dimensional parameter reconstruction and monocular image distance measurement and use the standard cross entropy loss to optimize the transformer model. This model has achieved good results on the sampled data set.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2166/1/012065</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computer vision ; Distance measurement ; Hole size ; Image reconstruction ; Mathematical models ; Neural networks ; Parameters ; Physics</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2166 (1), p.12065</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2395-89e53e232982632afef7e81c93cd323e83e2386929eb47e8c999f187f80280233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2166/1/012065/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Liu, Chengzhao</creatorcontrib><creatorcontrib>Ma, Chenzhe</creatorcontrib><creatorcontrib>Zheng, Hantao</creatorcontrib><creatorcontrib>Xu, Jianglong</creatorcontrib><title>Distance Measurement in Industrial Scenarios</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>3D reconstruction technology is one of the important technologies of computer vision. Compared with 2D data, 3D space contains more abundant information, including location information, local / global features and so on. It is of great significance to solve the problem of target distance measurement in a single image scene. It is difficult for neural network to predict hole size without image scale information. In this paper, we focus on the measurement of objects with little change in height in the image. We use the relationship between camera parameters and regional features and the internal relationship between regional features to solve the problems of three-dimensional parameter reconstruction and monocular image distance measurement and use the standard cross entropy loss to optimize the transformer model. This model has achieved good results on the sampled data set.</description><subject>Computer vision</subject><subject>Distance measurement</subject><subject>Hole size</subject><subject>Image reconstruction</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFUEtLAzEQDqJgrf4GF7y6bh5NdnKUarVQ8aCeQ0xnIaXNrsnuwX9vlpV6dBiYge8xzEfINaN3jAJUrF7wUkmtKs6UqlhFGadKnpDZETk97gDn5CKlHaUiVz0jtw8-9TY4LF7QpiHiAUNf-FCsw3ZIffR2X7w5DDb6Nl2Ss8buE179zjn5WD2-L5_LzevTenm_KR0XWpagUQrkgmvgSnDbYFMjMKeF2wouEEYQlOYaPxcZcVrrhkHdAOW5hZiTm8m3i-3XgKk3u3aIIZ802VCCAi51ZtUTy8U2pYiN6aI_2PhtGDVjNGZ82owBmDEaw8wUTVaKSenb7s_6P9UPTnhjQw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Liu, Hao</creator><creator>Liu, Chengzhao</creator><creator>Ma, Chenzhe</creator><creator>Zheng, Hantao</creator><creator>Xu, Jianglong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Distance Measurement in Industrial Scenarios</title><author>Liu, Hao ; Liu, Chengzhao ; Ma, Chenzhe ; Zheng, Hantao ; Xu, Jianglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2395-89e53e232982632afef7e81c93cd323e83e2386929eb47e8c999f187f80280233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer vision</topic><topic>Distance measurement</topic><topic>Hole size</topic><topic>Image reconstruction</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Liu, Chengzhao</creatorcontrib><creatorcontrib>Ma, Chenzhe</creatorcontrib><creatorcontrib>Zheng, Hantao</creatorcontrib><creatorcontrib>Xu, Jianglong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hao</au><au>Liu, Chengzhao</au><au>Ma, Chenzhe</au><au>Zheng, Hantao</au><au>Xu, Jianglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance Measurement in Industrial Scenarios</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2166</volume><issue>1</issue><spage>12065</spage><pages>12065-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>3D reconstruction technology is one of the important technologies of computer vision. Compared with 2D data, 3D space contains more abundant information, including location information, local / global features and so on. It is of great significance to solve the problem of target distance measurement in a single image scene. It is difficult for neural network to predict hole size without image scale information. In this paper, we focus on the measurement of objects with little change in height in the image. We use the relationship between camera parameters and regional features and the internal relationship between regional features to solve the problems of three-dimensional parameter reconstruction and monocular image distance measurement and use the standard cross entropy loss to optimize the transformer model. This model has achieved good results on the sampled data set.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2166/1/012065</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-01, Vol.2166 (1), p.12065
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2635868259
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computer vision
Distance measurement
Hole size
Image reconstruction
Mathematical models
Neural networks
Parameters
Physics
title Distance Measurement in Industrial Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20Measurement%20in%20Industrial%20Scenarios&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Liu,%20Hao&rft.date=2022-01-01&rft.volume=2166&rft.issue=1&rft.spage=12065&rft.pages=12065-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2166/1/012065&rft_dat=%3Cproquest_cross%3E2635868259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635868259&rft_id=info:pmid/&rfr_iscdi=true