Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine
With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimizatio...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-01, Vol.2181 (1), p.12058 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12058 |
container_title | Journal of physics. Conference series |
container_volume | 2181 |
creator | Zou, Xin Lv, Rongxin Li, Xinyan Chen, Huan Wang, Ziqi Yang, Hanning |
description | With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%. |
doi_str_mv | 10.1088/1742-6596/2181/1/012058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2635866978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635866978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-332208d740cfee9938c43916548c4260ad115277c231048f954409d736d3f3753</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm0-2ia91LnNyWTi_LgMIU1nRtd0aXoxf72plYkgeG7ynpznvAfeIDhH8ApBxiJEYxymSZZGGDEUoQgiDBN2EAz2k8O9Zuw4OGmaNYTEFx0E21nlVFnqlaocGJdKOqulKMFEtKUDt8r5H20qIKocPClpVpX-6m9Eo3LgxdSKHXgzZQEWtdMb_SH2_LKta2MdePUexoIHId91pU6Do0KUjTr7fofBy2T8PLoL54vpbHQ9DyXGiQsJwRiynMZQFkplGWEyJhlKk9gLnEKRI5RgSiUmCMasyJI4hllOSZqTgtCEDIOL3re2ZtuqxvG1aW3lT3KckoSlaUaZp2hPSWuaxqqC11ZvhN1xBHmXL--S412KvMuXI97n6zcv-01t6h_r-8fR8jfI67zwMPkD_u_EJ6FTiWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635866978</pqid></control><display><type>article</type><title>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</title><source>Open Access: IOP Publishing Free Content</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Institute of Physics</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Zou, Xin ; Lv, Rongxin ; Li, Xinyan ; Chen, Huan ; Wang, Ziqi ; Yang, Hanning</creator><creatorcontrib>Zou, Xin ; Lv, Rongxin ; Li, Xinyan ; Chen, Huan ; Wang, Ziqi ; Yang, Hanning</creatorcontrib><description>With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2181/1/012058</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Back propagation networks ; Classification ; Electric appliances ; Electric equipment ; Electrical faults ; Fault detection ; Feature extraction ; Household appliances ; Incandescent lamps ; Optimization ; Ovens ; Physics ; Recognition ; Support vector machines ; Waveforms ; Wolves</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2181 (1), p.12058</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-332208d740cfee9938c43916548c4260ad115277c231048f954409d736d3f3753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2181/1/012058/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Zou, Xin</creatorcontrib><creatorcontrib>Lv, Rongxin</creatorcontrib><creatorcontrib>Li, Xinyan</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Yang, Hanning</creatorcontrib><title>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.</description><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Classification</subject><subject>Electric appliances</subject><subject>Electric equipment</subject><subject>Electrical faults</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Household appliances</subject><subject>Incandescent lamps</subject><subject>Optimization</subject><subject>Ovens</subject><subject>Physics</subject><subject>Recognition</subject><subject>Support vector machines</subject><subject>Waveforms</subject><subject>Wolves</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm0-2ia91LnNyWTi_LgMIU1nRtd0aXoxf72plYkgeG7ynpznvAfeIDhH8ApBxiJEYxymSZZGGDEUoQgiDBN2EAz2k8O9Zuw4OGmaNYTEFx0E21nlVFnqlaocGJdKOqulKMFEtKUDt8r5H20qIKocPClpVpX-6m9Eo3LgxdSKHXgzZQEWtdMb_SH2_LKta2MdePUexoIHId91pU6Do0KUjTr7fofBy2T8PLoL54vpbHQ9DyXGiQsJwRiynMZQFkplGWEyJhlKk9gLnEKRI5RgSiUmCMasyJI4hllOSZqTgtCEDIOL3re2ZtuqxvG1aW3lT3KckoSlaUaZp2hPSWuaxqqC11ZvhN1xBHmXL--S412KvMuXI97n6zcv-01t6h_r-8fR8jfI67zwMPkD_u_EJ6FTiWE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zou, Xin</creator><creator>Lv, Rongxin</creator><creator>Li, Xinyan</creator><creator>Chen, Huan</creator><creator>Wang, Ziqi</creator><creator>Yang, Hanning</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</title><author>Zou, Xin ; Lv, Rongxin ; Li, Xinyan ; Chen, Huan ; Wang, Ziqi ; Yang, Hanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-332208d740cfee9938c43916548c4260ad115277c231048f954409d736d3f3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Classification</topic><topic>Electric appliances</topic><topic>Electric equipment</topic><topic>Electrical faults</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Household appliances</topic><topic>Incandescent lamps</topic><topic>Optimization</topic><topic>Ovens</topic><topic>Physics</topic><topic>Recognition</topic><topic>Support vector machines</topic><topic>Waveforms</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xin</creatorcontrib><creatorcontrib>Lv, Rongxin</creatorcontrib><creatorcontrib>Li, Xinyan</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Yang, Hanning</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xin</au><au>Lv, Rongxin</au><au>Li, Xinyan</au><au>Chen, Huan</au><au>Wang, Ziqi</au><au>Yang, Hanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2181</volume><issue>1</issue><spage>12058</spage><pages>12058-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2181/1/012058</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-01, Vol.2181 (1), p.12058 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2635866978 |
source | Open Access: IOP Publishing Free Content; Full-Text Journals in Chemistry (Open access); Institute of Physics; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Algorithms Back propagation networks Classification Electric appliances Electric equipment Electrical faults Fault detection Feature extraction Household appliances Incandescent lamps Optimization Ovens Physics Recognition Support vector machines Waveforms Wolves |
title | Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Electrical%20Fault%20Detection%20and%20Recognition%20Based%20on%20Gray%20Wolf%20Optimization%20and%20Support%20Vector%20Machine&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zou,%20Xin&rft.date=2022-01-01&rft.volume=2181&rft.issue=1&rft.spage=12058&rft.pages=12058-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2181/1/012058&rft_dat=%3Cproquest_iop_j%3E2635866978%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635866978&rft_id=info:pmid/&rfr_iscdi=true |