Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine

With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimizatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-01, Vol.2181 (1), p.12058
Hauptverfasser: Zou, Xin, Lv, Rongxin, Li, Xinyan, Chen, Huan, Wang, Ziqi, Yang, Hanning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12058
container_title Journal of physics. Conference series
container_volume 2181
creator Zou, Xin
Lv, Rongxin
Li, Xinyan
Chen, Huan
Wang, Ziqi
Yang, Hanning
description With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.
doi_str_mv 10.1088/1742-6596/2181/1/012058
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2635866978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635866978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-332208d740cfee9938c43916548c4260ad115277c231048f954409d736d3f3753</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKe_wYB3Qm0-2ia91LnNyWTi_LgMIU1nRtd0aXoxf72plYkgeG7ynpznvAfeIDhH8ApBxiJEYxymSZZGGDEUoQgiDBN2EAz2k8O9Zuw4OGmaNYTEFx0E21nlVFnqlaocGJdKOqulKMFEtKUDt8r5H20qIKocPClpVpX-6m9Eo3LgxdSKHXgzZQEWtdMb_SH2_LKta2MdePUexoIHId91pU6Do0KUjTr7fofBy2T8PLoL54vpbHQ9DyXGiQsJwRiynMZQFkplGWEyJhlKk9gLnEKRI5RgSiUmCMasyJI4hllOSZqTgtCEDIOL3re2ZtuqxvG1aW3lT3KckoSlaUaZp2hPSWuaxqqC11ZvhN1xBHmXL--S412KvMuXI97n6zcv-01t6h_r-8fR8jfI67zwMPkD_u_EJ6FTiWE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635866978</pqid></control><display><type>article</type><title>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</title><source>Open Access: IOP Publishing Free Content</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Institute of Physics</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Zou, Xin ; Lv, Rongxin ; Li, Xinyan ; Chen, Huan ; Wang, Ziqi ; Yang, Hanning</creator><creatorcontrib>Zou, Xin ; Lv, Rongxin ; Li, Xinyan ; Chen, Huan ; Wang, Ziqi ; Yang, Hanning</creatorcontrib><description>With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2181/1/012058</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Back propagation networks ; Classification ; Electric appliances ; Electric equipment ; Electrical faults ; Fault detection ; Feature extraction ; Household appliances ; Incandescent lamps ; Optimization ; Ovens ; Physics ; Recognition ; Support vector machines ; Waveforms ; Wolves</subject><ispartof>Journal of physics. Conference series, 2022-01, Vol.2181 (1), p.12058</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-332208d740cfee9938c43916548c4260ad115277c231048f954409d736d3f3753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2181/1/012058/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Zou, Xin</creatorcontrib><creatorcontrib>Lv, Rongxin</creatorcontrib><creatorcontrib>Li, Xinyan</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Yang, Hanning</creatorcontrib><title>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.</description><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Classification</subject><subject>Electric appliances</subject><subject>Electric equipment</subject><subject>Electrical faults</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Household appliances</subject><subject>Incandescent lamps</subject><subject>Optimization</subject><subject>Ovens</subject><subject>Physics</subject><subject>Recognition</subject><subject>Support vector machines</subject><subject>Waveforms</subject><subject>Wolves</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKe_wYB3Qm0-2ia91LnNyWTi_LgMIU1nRtd0aXoxf72plYkgeG7ynpznvAfeIDhH8ApBxiJEYxymSZZGGDEUoQgiDBN2EAz2k8O9Zuw4OGmaNYTEFx0E21nlVFnqlaocGJdKOqulKMFEtKUDt8r5H20qIKocPClpVpX-6m9Eo3LgxdSKHXgzZQEWtdMb_SH2_LKta2MdePUexoIHId91pU6Do0KUjTr7fofBy2T8PLoL54vpbHQ9DyXGiQsJwRiynMZQFkplGWEyJhlKk9gLnEKRI5RgSiUmCMasyJI4hllOSZqTgtCEDIOL3re2ZtuqxvG1aW3lT3KckoSlaUaZp2hPSWuaxqqC11ZvhN1xBHmXL--S412KvMuXI97n6zcv-01t6h_r-8fR8jfI67zwMPkD_u_EJ6FTiWE</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zou, Xin</creator><creator>Lv, Rongxin</creator><creator>Li, Xinyan</creator><creator>Chen, Huan</creator><creator>Wang, Ziqi</creator><creator>Yang, Hanning</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220101</creationdate><title>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</title><author>Zou, Xin ; Lv, Rongxin ; Li, Xinyan ; Chen, Huan ; Wang, Ziqi ; Yang, Hanning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-332208d740cfee9938c43916548c4260ad115277c231048f954409d736d3f3753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Classification</topic><topic>Electric appliances</topic><topic>Electric equipment</topic><topic>Electrical faults</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Household appliances</topic><topic>Incandescent lamps</topic><topic>Optimization</topic><topic>Ovens</topic><topic>Physics</topic><topic>Recognition</topic><topic>Support vector machines</topic><topic>Waveforms</topic><topic>Wolves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Xin</creatorcontrib><creatorcontrib>Lv, Rongxin</creatorcontrib><creatorcontrib>Li, Xinyan</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><creatorcontrib>Wang, Ziqi</creatorcontrib><creatorcontrib>Yang, Hanning</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Xin</au><au>Lv, Rongxin</au><au>Li, Xinyan</au><au>Chen, Huan</au><au>Wang, Ziqi</au><au>Yang, Hanning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>2181</volume><issue>1</issue><spage>12058</spage><pages>12058-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>With the increase of electrical equipment, the hidden danger of its failure also rises. Aiming at the problem that the classification accuracy of the basic traditional classification algorithm is not high when judging whether the electrical failure occurs, this paper proposes a Gray Wolf Optimization Support Vector Machine model to improve the recognition rate of electrical diagnosis, referred to as GWO-SVM. We first collected the most common linear (incandescent lamps) and non-linear (microwave ovens) household electrical appliances in normal working and arc fault waveform signals in real life, and then carried out frequency domain feature extraction. Finally, compared with no-optimized SVM and BP neural network, we employed the gray wolf optimization algorithm to optimize support vector machine, and the accuracy of GWO-SVM reaches 90%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2181/1/012058</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-01, Vol.2181 (1), p.12058
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2635866978
source Open Access: IOP Publishing Free Content; Full-Text Journals in Chemistry (Open access); Institute of Physics; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Algorithms
Back propagation networks
Classification
Electric appliances
Electric equipment
Electrical faults
Fault detection
Feature extraction
Household appliances
Incandescent lamps
Optimization
Ovens
Physics
Recognition
Support vector machines
Waveforms
Wolves
title Intelligent Electrical Fault Detection and Recognition Based on Gray Wolf Optimization and Support Vector Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Electrical%20Fault%20Detection%20and%20Recognition%20Based%20on%20Gray%20Wolf%20Optimization%20and%20Support%20Vector%20Machine&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zou,%20Xin&rft.date=2022-01-01&rft.volume=2181&rft.issue=1&rft.spage=12058&rft.pages=12058-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2181/1/012058&rft_dat=%3Cproquest_iop_j%3E2635866978%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635866978&rft_id=info:pmid/&rfr_iscdi=true