Automated clustering of COVID-19 anti-vaccine discourse on Twitter
Attitudes about vaccination have become more polarized; it is common to see vaccine disinformation and fringe conspiracy theories online. An observational study of Twitter vaccine discourse is found in Ojea Quintana et al. (2021): the authors analyzed approximately six months' of Twitter discou...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ignacio Ojea Quintana Cheong, Marc Alfano, Mark Reimann, Ritsaart Klein, Colin |
description | Attitudes about vaccination have become more polarized; it is common to see vaccine disinformation and fringe conspiracy theories online. An observational study of Twitter vaccine discourse is found in Ojea Quintana et al. (2021): the authors analyzed approximately six months' of Twitter discourse -- 1.3 million original tweets and 18 million retweets between December 2019 and June 2020, ranging from before to after the establishment of Covid-19 as a pandemic. This work expands upon Ojea Quintana et al. (2021) with two main contributions from data science. First, based on the authors' initial network clustering and qualitative analysis techniques, we are able to clearly demarcate and visualize the language patterns used in discourse by Antivaxxers (anti-vaccination campaigners and vaccine deniers) versus other clusters (collectively, Others). Second, using the characteristics of Antivaxxers' tweets, we develop text classifiers to determine the likelihood a given user is employing anti-vaccination language, ultimately contributing to an early-warning mechanism to improve the health of our epistemic environment and bolster (and not hinder) public health initiatives. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2635742485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635742485</sourcerecordid><originalsourceid>FETCH-proquest_journals_26357424853</originalsourceid><addsrcrecordid>eNqNi7EOgjAUABsTE4nyDy9xbgKvFHBU1OjkQlhJU4opwVZpq78vgx_gdMPdLUiEjKW0zBBXJHZuSJIE8wI5ZxE57IO3D-FVB3IMzqtJmzvYHqpbcz3SdAfCeE3fQkptFHTaSRsmp8AaqD_az8OGLHsxOhX_uCbb86muLvQ52VdQzrfDvJhZtZgzXmSYlZz9V30BXAo5Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635742485</pqid></control><display><type>article</type><title>Automated clustering of COVID-19 anti-vaccine discourse on Twitter</title><source>Free E- Journals</source><creator>Ignacio Ojea Quintana ; Cheong, Marc ; Alfano, Mark ; Reimann, Ritsaart ; Klein, Colin</creator><creatorcontrib>Ignacio Ojea Quintana ; Cheong, Marc ; Alfano, Mark ; Reimann, Ritsaart ; Klein, Colin</creatorcontrib><description>Attitudes about vaccination have become more polarized; it is common to see vaccine disinformation and fringe conspiracy theories online. An observational study of Twitter vaccine discourse is found in Ojea Quintana et al. (2021): the authors analyzed approximately six months' of Twitter discourse -- 1.3 million original tweets and 18 million retweets between December 2019 and June 2020, ranging from before to after the establishment of Covid-19 as a pandemic. This work expands upon Ojea Quintana et al. (2021) with two main contributions from data science. First, based on the authors' initial network clustering and qualitative analysis techniques, we are able to clearly demarcate and visualize the language patterns used in discourse by Antivaxxers (anti-vaccination campaigners and vaccine deniers) versus other clusters (collectively, Others). Second, using the characteristics of Antivaxxers' tweets, we develop text classifiers to determine the likelihood a given user is employing anti-vaccination language, ultimately contributing to an early-warning mechanism to improve the health of our epistemic environment and bolster (and not hinder) public health initiatives.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Coronaviruses ; COVID-19 vaccines ; Immunization ; Public health ; Qualitative analysis ; Vaccines</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ignacio Ojea Quintana</creatorcontrib><creatorcontrib>Cheong, Marc</creatorcontrib><creatorcontrib>Alfano, Mark</creatorcontrib><creatorcontrib>Reimann, Ritsaart</creatorcontrib><creatorcontrib>Klein, Colin</creatorcontrib><title>Automated clustering of COVID-19 anti-vaccine discourse on Twitter</title><title>arXiv.org</title><description>Attitudes about vaccination have become more polarized; it is common to see vaccine disinformation and fringe conspiracy theories online. An observational study of Twitter vaccine discourse is found in Ojea Quintana et al. (2021): the authors analyzed approximately six months' of Twitter discourse -- 1.3 million original tweets and 18 million retweets between December 2019 and June 2020, ranging from before to after the establishment of Covid-19 as a pandemic. This work expands upon Ojea Quintana et al. (2021) with two main contributions from data science. First, based on the authors' initial network clustering and qualitative analysis techniques, we are able to clearly demarcate and visualize the language patterns used in discourse by Antivaxxers (anti-vaccination campaigners and vaccine deniers) versus other clusters (collectively, Others). Second, using the characteristics of Antivaxxers' tweets, we develop text classifiers to determine the likelihood a given user is employing anti-vaccination language, ultimately contributing to an early-warning mechanism to improve the health of our epistemic environment and bolster (and not hinder) public health initiatives.</description><subject>Clustering</subject><subject>Coronaviruses</subject><subject>COVID-19 vaccines</subject><subject>Immunization</subject><subject>Public health</subject><subject>Qualitative analysis</subject><subject>Vaccines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EOgjAUABsTE4nyDy9xbgKvFHBU1OjkQlhJU4opwVZpq78vgx_gdMPdLUiEjKW0zBBXJHZuSJIE8wI5ZxE57IO3D-FVB3IMzqtJmzvYHqpbcz3SdAfCeE3fQkptFHTaSRsmp8AaqD_az8OGLHsxOhX_uCbb86muLvQ52VdQzrfDvJhZtZgzXmSYlZz9V30BXAo5Gw</recordid><startdate>20220303</startdate><enddate>20220303</enddate><creator>Ignacio Ojea Quintana</creator><creator>Cheong, Marc</creator><creator>Alfano, Mark</creator><creator>Reimann, Ritsaart</creator><creator>Klein, Colin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220303</creationdate><title>Automated clustering of COVID-19 anti-vaccine discourse on Twitter</title><author>Ignacio Ojea Quintana ; Cheong, Marc ; Alfano, Mark ; Reimann, Ritsaart ; Klein, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26357424853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clustering</topic><topic>Coronaviruses</topic><topic>COVID-19 vaccines</topic><topic>Immunization</topic><topic>Public health</topic><topic>Qualitative analysis</topic><topic>Vaccines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ignacio Ojea Quintana</creatorcontrib><creatorcontrib>Cheong, Marc</creatorcontrib><creatorcontrib>Alfano, Mark</creatorcontrib><creatorcontrib>Reimann, Ritsaart</creatorcontrib><creatorcontrib>Klein, Colin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignacio Ojea Quintana</au><au>Cheong, Marc</au><au>Alfano, Mark</au><au>Reimann, Ritsaart</au><au>Klein, Colin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Automated clustering of COVID-19 anti-vaccine discourse on Twitter</atitle><jtitle>arXiv.org</jtitle><date>2022-03-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Attitudes about vaccination have become more polarized; it is common to see vaccine disinformation and fringe conspiracy theories online. An observational study of Twitter vaccine discourse is found in Ojea Quintana et al. (2021): the authors analyzed approximately six months' of Twitter discourse -- 1.3 million original tweets and 18 million retweets between December 2019 and June 2020, ranging from before to after the establishment of Covid-19 as a pandemic. This work expands upon Ojea Quintana et al. (2021) with two main contributions from data science. First, based on the authors' initial network clustering and qualitative analysis techniques, we are able to clearly demarcate and visualize the language patterns used in discourse by Antivaxxers (anti-vaccination campaigners and vaccine deniers) versus other clusters (collectively, Others). Second, using the characteristics of Antivaxxers' tweets, we develop text classifiers to determine the likelihood a given user is employing anti-vaccination language, ultimately contributing to an early-warning mechanism to improve the health of our epistemic environment and bolster (and not hinder) public health initiatives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2635742485 |
source | Free E- Journals |
subjects | Clustering Coronaviruses COVID-19 vaccines Immunization Public health Qualitative analysis Vaccines |
title | Automated clustering of COVID-19 anti-vaccine discourse on Twitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Automated%20clustering%20of%20COVID-19%20anti-vaccine%20discourse%20on%20Twitter&rft.jtitle=arXiv.org&rft.au=Ignacio%20Ojea%20Quintana&rft.date=2022-03-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2635742485%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635742485&rft_id=info:pmid/&rfr_iscdi=true |