A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor

A generalized fault-tolerant control (FTC) strategy for the field-oriented control (FOC) and direct torque control (DTC) of five-phase fault-tolerant permanent magnet (FPFTPM) motors under various open-circuit faults is presented in this article. Most previous studies regarding FTC target a specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-08, Vol.69 (8), p.7825-7836
Hauptverfasser: Zhang, Li, Zhu, Xiaoyong, Cui, Ronghua, Han, Sai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7836
container_issue 8
container_start_page 7825
container_title IEEE transactions on industrial electronics (1982)
container_volume 69
creator Zhang, Li
Zhu, Xiaoyong
Cui, Ronghua
Han, Sai
description A generalized fault-tolerant control (FTC) strategy for the field-oriented control (FOC) and direct torque control (DTC) of five-phase fault-tolerant permanent magnet (FPFTPM) motors under various open-circuit faults is presented in this article. Most previous studies regarding FTC target a specific primary control algorithm and involve different reduced-order transformation matrices and additional current controllers, which increase the complexity of the entire drive system. In this study, a solution to the aforementioned problems is devised by developing optimal fault-tolerant voltages, which are derived from fault-tolerant mechanism analysis and steady-healthy design. Because the coordinate transformation need not be changed and additional voltage compensation is not required, a minimal control drive system reconfiguration under various open-circuit faults can be achieved to avoid accommodating the change of the primary control algorithm. The proposed control strategy not only improves the torque performance and dynamic response under healthy and fault conditions, but also adapts to both FOC and DTC. Experimental results for a 2 kW FPFTPM motor prototype are provided to evaluate the proposed strategy.
doi_str_mv 10.1109/TIE.2021.3106012
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635718846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9522036</ieee_id><sourcerecordid>2635718846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cf2787a462d60404a9d2c5cee48ae13c2504bddf282c00a9bae9aa556edc97563</originalsourceid><addsrcrecordid>eNpdkMFLwzAUh4MoOKd3wUvAc-ZLmrTNUapVwbGB9Vyy9FUrNZlpJsyDf7sdEw-e3uH9vt97fIScc5hxDvqqeridCRB8lnBIgYsDMuFKZUxrmR-SCYgsZwAyPSYnw_AGwKXiakK-r-kdOgym776woYs1OlZ0wW66SEuz6SOrfD-uXaSFdzH4nj7FYCK-bGnrAy0XBTWuoTdVQX1Ly-4T2fLVDPifXmJ4Nw5dZHPz4jDSuY8-nJKj1vQDnv3OKXkub6vinj0u7h6K60dmheaR2XZ8PzMyFU0KEqTRjbDKIsrcIE-sUCBXTdOKXFgAo1cGtTFKpdhYnak0mZLLfe86-I8NDrF-85vgxpO1SBOV8TyXuxTsUzb4YQjY1uvQvZuwrTnUO8v1aLneWa5_LY_IxR7pEPEvrpUQkKTJD3YueIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635718846</pqid></control><display><type>article</type><title>A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Li ; Zhu, Xiaoyong ; Cui, Ronghua ; Han, Sai</creator><creatorcontrib>Zhang, Li ; Zhu, Xiaoyong ; Cui, Ronghua ; Han, Sai</creatorcontrib><description>A generalized fault-tolerant control (FTC) strategy for the field-oriented control (FOC) and direct torque control (DTC) of five-phase fault-tolerant permanent magnet (FPFTPM) motors under various open-circuit faults is presented in this article. Most previous studies regarding FTC target a specific primary control algorithm and involve different reduced-order transformation matrices and additional current controllers, which increase the complexity of the entire drive system. In this study, a solution to the aforementioned problems is devised by developing optimal fault-tolerant voltages, which are derived from fault-tolerant mechanism analysis and steady-healthy design. Because the coordinate transformation need not be changed and additional voltage compensation is not required, a minimal control drive system reconfiguration under various open-circuit faults can be achieved to avoid accommodating the change of the primary control algorithm. The proposed control strategy not only improves the torque performance and dynamic response under healthy and fault conditions, but also adapts to both FOC and DTC. Experimental results for a 2 kW FPFTPM motor prototype are provided to evaluate the proposed strategy.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2021.3106012</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits ; Control algorithms ; Control theory ; Coordinate transformations ; Direct torque control (DTC) ; Dynamic response ; Fault tolerance ; Fault tolerant systems ; fault-tolerant ; field-oriented control (FOC) ; five-phase motor ; Permanent magnet motors ; Permanent magnets ; Reconfiguration ; Reluctance motors ; Rotors ; Stator windings ; steady- healthy design ; Torque</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022-08, Vol.69 (8), p.7825-7836</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cf2787a462d60404a9d2c5cee48ae13c2504bddf282c00a9bae9aa556edc97563</citedby><cites>FETCH-LOGICAL-c291t-cf2787a462d60404a9d2c5cee48ae13c2504bddf282c00a9bae9aa556edc97563</cites><orcidid>0000-0002-5308-8988 ; 0000-0001-6333-3329 ; 0000-0002-3151-5205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9522036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9522036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhu, Xiaoyong</creatorcontrib><creatorcontrib>Cui, Ronghua</creatorcontrib><creatorcontrib>Han, Sai</creatorcontrib><title>A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>A generalized fault-tolerant control (FTC) strategy for the field-oriented control (FOC) and direct torque control (DTC) of five-phase fault-tolerant permanent magnet (FPFTPM) motors under various open-circuit faults is presented in this article. Most previous studies regarding FTC target a specific primary control algorithm and involve different reduced-order transformation matrices and additional current controllers, which increase the complexity of the entire drive system. In this study, a solution to the aforementioned problems is devised by developing optimal fault-tolerant voltages, which are derived from fault-tolerant mechanism analysis and steady-healthy design. Because the coordinate transformation need not be changed and additional voltage compensation is not required, a minimal control drive system reconfiguration under various open-circuit faults can be achieved to avoid accommodating the change of the primary control algorithm. The proposed control strategy not only improves the torque performance and dynamic response under healthy and fault conditions, but also adapts to both FOC and DTC. Experimental results for a 2 kW FPFTPM motor prototype are provided to evaluate the proposed strategy.</description><subject>Algorithms</subject><subject>Circuits</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Coordinate transformations</subject><subject>Direct torque control (DTC)</subject><subject>Dynamic response</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>fault-tolerant</subject><subject>field-oriented control (FOC)</subject><subject>five-phase motor</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Reconfiguration</subject><subject>Reluctance motors</subject><subject>Rotors</subject><subject>Stator windings</subject><subject>steady- healthy design</subject><subject>Torque</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFLwzAUh4MoOKd3wUvAc-ZLmrTNUapVwbGB9Vyy9FUrNZlpJsyDf7sdEw-e3uH9vt97fIScc5hxDvqqeridCRB8lnBIgYsDMuFKZUxrmR-SCYgsZwAyPSYnw_AGwKXiakK-r-kdOgym776woYs1OlZ0wW66SEuz6SOrfD-uXaSFdzH4nj7FYCK-bGnrAy0XBTWuoTdVQX1Ly-4T2fLVDPifXmJ4Nw5dZHPz4jDSuY8-nJKj1vQDnv3OKXkub6vinj0u7h6K60dmheaR2XZ8PzMyFU0KEqTRjbDKIsrcIE-sUCBXTdOKXFgAo1cGtTFKpdhYnak0mZLLfe86-I8NDrF-85vgxpO1SBOV8TyXuxTsUzb4YQjY1uvQvZuwrTnUO8v1aLneWa5_LY_IxR7pEPEvrpUQkKTJD3YueIo</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zhang, Li</creator><creator>Zhu, Xiaoyong</creator><creator>Cui, Ronghua</creator><creator>Han, Sai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5308-8988</orcidid><orcidid>https://orcid.org/0000-0001-6333-3329</orcidid><orcidid>https://orcid.org/0000-0002-3151-5205</orcidid></search><sort><creationdate>20220801</creationdate><title>A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor</title><author>Zhang, Li ; Zhu, Xiaoyong ; Cui, Ronghua ; Han, Sai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cf2787a462d60404a9d2c5cee48ae13c2504bddf282c00a9bae9aa556edc97563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Circuits</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Coordinate transformations</topic><topic>Direct torque control (DTC)</topic><topic>Dynamic response</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>fault-tolerant</topic><topic>field-oriented control (FOC)</topic><topic>five-phase motor</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Reconfiguration</topic><topic>Reluctance motors</topic><topic>Rotors</topic><topic>Stator windings</topic><topic>steady- healthy design</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhu, Xiaoyong</creatorcontrib><creatorcontrib>Cui, Ronghua</creatorcontrib><creatorcontrib>Han, Sai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Li</au><au>Zhu, Xiaoyong</au><au>Cui, Ronghua</au><au>Han, Sai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>69</volume><issue>8</issue><spage>7825</spage><epage>7836</epage><pages>7825-7836</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>A generalized fault-tolerant control (FTC) strategy for the field-oriented control (FOC) and direct torque control (DTC) of five-phase fault-tolerant permanent magnet (FPFTPM) motors under various open-circuit faults is presented in this article. Most previous studies regarding FTC target a specific primary control algorithm and involve different reduced-order transformation matrices and additional current controllers, which increase the complexity of the entire drive system. In this study, a solution to the aforementioned problems is devised by developing optimal fault-tolerant voltages, which are derived from fault-tolerant mechanism analysis and steady-healthy design. Because the coordinate transformation need not be changed and additional voltage compensation is not required, a minimal control drive system reconfiguration under various open-circuit faults can be achieved to avoid accommodating the change of the primary control algorithm. The proposed control strategy not only improves the torque performance and dynamic response under healthy and fault conditions, but also adapts to both FOC and DTC. Experimental results for a 2 kW FPFTPM motor prototype are provided to evaluate the proposed strategy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2021.3106012</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5308-8988</orcidid><orcidid>https://orcid.org/0000-0001-6333-3329</orcidid><orcidid>https://orcid.org/0000-0002-3151-5205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2022-08, Vol.69 (8), p.7825-7836
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2635718846
source IEEE Electronic Library (IEL)
subjects Algorithms
Circuits
Control algorithms
Control theory
Coordinate transformations
Direct torque control (DTC)
Dynamic response
Fault tolerance
Fault tolerant systems
fault-tolerant
field-oriented control (FOC)
five-phase motor
Permanent magnet motors
Permanent magnets
Reconfiguration
Reluctance motors
Rotors
Stator windings
steady- healthy design
Torque
title A Generalized Open-Circuit Fault-Tolerant Control Strategy for FOC and DTC of Five-Phase Fault-Tolerant Permanent-Magnet Motor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalized%20Open-Circuit%20Fault-Tolerant%20Control%20Strategy%20for%20FOC%20and%20DTC%20of%20Five-Phase%20Fault-Tolerant%20Permanent-Magnet%20Motor&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Zhang,%20Li&rft.date=2022-08-01&rft.volume=69&rft.issue=8&rft.spage=7825&rft.epage=7836&rft.pages=7825-7836&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2021.3106012&rft_dat=%3Cproquest_RIE%3E2635718846%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635718846&rft_id=info:pmid/&rft_ieee_id=9522036&rfr_iscdi=true