Flow in a channel with porous insert
Filtration of an incompressible liquid (gas) in a non-deformable porou s medium is investigated. The results of numerical simulation of the hydrodynamic features of the flow arising after the passage of the liquid through a layer of an immobile porous medium are presented. An interpenetrating model...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2022-02, Vol.990 (1), p.12027 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12027 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 990 |
creator | Rasulov, A Dalabaev, U |
description | Filtration of an incompressible liquid (gas) in a non-deformable porou s medium is investigated. The results of numerical simulation of the hydrodynamic features of the flow arising after the passage of the liquid through a layer of an immobile porous medium are presented. An interpenetrating model of multiphase media is used to describe such flows. The porosity and permeability of the porous medium, as well as the force of interfacial interaction, are considered in the framework of compliance with the Kozeny-Karman ratio. The influence of the geometrical shape of the bulk layer on the nature and magnitude of the inhomogeneity of the flow velocity behind the obstacle is shown. Considering the shape of the porous medium significantly affects the flow parameters. Numerical simulation results are compared with experimental data. The effects of the non-uniformity of the fluid velocity field arising from the curvature of the layer surface and the influence of the arising inhomogeneity on the velocity are investigated by the methods of a computational experiment. A qualitative comparison is made of velocity inhomogeneities when a fluid flows through a porous obstacle. For the numerical implementation of the filtration equation of the interpenetrating model, a SIMPLElike algorithm was used. |
doi_str_mv | 10.1088/1755-1315/990/1/012027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635708276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635708276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3227-cdbf5a1aeeb392d86cc8f489b109f9f35dd9f6b0062318e2c342dd5291fa63c93</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrf6CDOjCzTi5SfNaSmlVKLhQ1yGTB51SJ2PSUvx7p0ypCIKre-G8OAeha8D3gKWsQDBWAgVWKYUrqDAQTMQJGh2B0-OPxTm6yHmFMRcTqkbodr6Ou6JpC1PYpWlbvy52zWZZdDHFbe6B7NPmEp0Fs87-6nDH6H0-e5s-lYuXx-fpw6K0lBBRWlcHZsB4X1NFnOTWyjCRqgasggqUOacCr_tsQkF6YumEOMeIgmA4tYqO0c3g26X4ufV5o1dxm9o-UhNOmcCSCN6z-MCyKeacfNBdaj5M-tKA9X4RvS-r98V1v4gGPSzSC8kgbGL34_yv6O4P0Wz2-oumOxfoNz1SbYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635708276</pqid></control><display><type>article</type><title>Flow in a channel with porous insert</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rasulov, A ; Dalabaev, U</creator><creatorcontrib>Rasulov, A ; Dalabaev, U</creatorcontrib><description>Filtration of an incompressible liquid (gas) in a non-deformable porou s medium is investigated. The results of numerical simulation of the hydrodynamic features of the flow arising after the passage of the liquid through a layer of an immobile porous medium are presented. An interpenetrating model of multiphase media is used to describe such flows. The porosity and permeability of the porous medium, as well as the force of interfacial interaction, are considered in the framework of compliance with the Kozeny-Karman ratio. The influence of the geometrical shape of the bulk layer on the nature and magnitude of the inhomogeneity of the flow velocity behind the obstacle is shown. Considering the shape of the porous medium significantly affects the flow parameters. Numerical simulation results are compared with experimental data. The effects of the non-uniformity of the fluid velocity field arising from the curvature of the layer surface and the influence of the arising inhomogeneity on the velocity are investigated by the methods of a computational experiment. A qualitative comparison is made of velocity inhomogeneities when a fluid flows through a porous obstacle. For the numerical implementation of the filtration equation of the interpenetrating model, a SIMPLElike algorithm was used.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/990/1/012027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Barriers ; Computer applications ; Computer simulation ; Filtration ; Flow velocity ; Fluid dynamics ; Fluid flow ; Formability ; Incompressible flow ; Inhomogeneity ; Mathematical models ; Nonuniformity ; Permeability ; Porosity ; Porous media ; Porous media flow ; Velocity ; Velocity distribution</subject><ispartof>IOP conference series. Earth and environmental science, 2022-02, Vol.990 (1), p.12027</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3227-cdbf5a1aeeb392d86cc8f489b109f9f35dd9f6b0062318e2c342dd5291fa63c93</citedby><cites>FETCH-LOGICAL-c3227-cdbf5a1aeeb392d86cc8f489b109f9f35dd9f6b0062318e2c342dd5291fa63c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/990/1/012027/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Rasulov, A</creatorcontrib><creatorcontrib>Dalabaev, U</creatorcontrib><title>Flow in a channel with porous insert</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Filtration of an incompressible liquid (gas) in a non-deformable porou s medium is investigated. The results of numerical simulation of the hydrodynamic features of the flow arising after the passage of the liquid through a layer of an immobile porous medium are presented. An interpenetrating model of multiphase media is used to describe such flows. The porosity and permeability of the porous medium, as well as the force of interfacial interaction, are considered in the framework of compliance with the Kozeny-Karman ratio. The influence of the geometrical shape of the bulk layer on the nature and magnitude of the inhomogeneity of the flow velocity behind the obstacle is shown. Considering the shape of the porous medium significantly affects the flow parameters. Numerical simulation results are compared with experimental data. The effects of the non-uniformity of the fluid velocity field arising from the curvature of the layer surface and the influence of the arising inhomogeneity on the velocity are investigated by the methods of a computational experiment. A qualitative comparison is made of velocity inhomogeneities when a fluid flows through a porous obstacle. For the numerical implementation of the filtration equation of the interpenetrating model, a SIMPLElike algorithm was used.</description><subject>Algorithms</subject><subject>Barriers</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Filtration</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Formability</subject><subject>Incompressible flow</subject><subject>Inhomogeneity</subject><subject>Mathematical models</subject><subject>Nonuniformity</subject><subject>Permeability</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Porous media flow</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUMtKAzEUDaJgrf6CDOjCzTi5SfNaSmlVKLhQ1yGTB51SJ2PSUvx7p0ypCIKre-G8OAeha8D3gKWsQDBWAgVWKYUrqDAQTMQJGh2B0-OPxTm6yHmFMRcTqkbodr6Ou6JpC1PYpWlbvy52zWZZdDHFbe6B7NPmEp0Fs87-6nDH6H0-e5s-lYuXx-fpw6K0lBBRWlcHZsB4X1NFnOTWyjCRqgasggqUOacCr_tsQkF6YumEOMeIgmA4tYqO0c3g26X4ufV5o1dxm9o-UhNOmcCSCN6z-MCyKeacfNBdaj5M-tKA9X4RvS-r98V1v4gGPSzSC8kgbGL34_yv6O4P0Wz2-oumOxfoNz1SbYo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Rasulov, A</creator><creator>Dalabaev, U</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20220201</creationdate><title>Flow in a channel with porous insert</title><author>Rasulov, A ; Dalabaev, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3227-cdbf5a1aeeb392d86cc8f489b109f9f35dd9f6b0062318e2c342dd5291fa63c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Barriers</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Filtration</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Formability</topic><topic>Incompressible flow</topic><topic>Inhomogeneity</topic><topic>Mathematical models</topic><topic>Nonuniformity</topic><topic>Permeability</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Porous media flow</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasulov, A</creatorcontrib><creatorcontrib>Dalabaev, U</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasulov, A</au><au>Dalabaev, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow in a channel with porous insert</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>990</volume><issue>1</issue><spage>12027</spage><pages>12027-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Filtration of an incompressible liquid (gas) in a non-deformable porou s medium is investigated. The results of numerical simulation of the hydrodynamic features of the flow arising after the passage of the liquid through a layer of an immobile porous medium are presented. An interpenetrating model of multiphase media is used to describe such flows. The porosity and permeability of the porous medium, as well as the force of interfacial interaction, are considered in the framework of compliance with the Kozeny-Karman ratio. The influence of the geometrical shape of the bulk layer on the nature and magnitude of the inhomogeneity of the flow velocity behind the obstacle is shown. Considering the shape of the porous medium significantly affects the flow parameters. Numerical simulation results are compared with experimental data. The effects of the non-uniformity of the fluid velocity field arising from the curvature of the layer surface and the influence of the arising inhomogeneity on the velocity are investigated by the methods of a computational experiment. A qualitative comparison is made of velocity inhomogeneities when a fluid flows through a porous obstacle. For the numerical implementation of the filtration equation of the interpenetrating model, a SIMPLElike algorithm was used.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/990/1/012027</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2022-02, Vol.990 (1), p.12027 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2635708276 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Barriers Computer applications Computer simulation Filtration Flow velocity Fluid dynamics Fluid flow Formability Incompressible flow Inhomogeneity Mathematical models Nonuniformity Permeability Porosity Porous media Porous media flow Velocity Velocity distribution |
title | Flow in a channel with porous insert |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20in%20a%20channel%20with%20porous%20insert&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Rasulov,%20A&rft.date=2022-02-01&rft.volume=990&rft.issue=1&rft.spage=12027&rft.pages=12027-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/990/1/012027&rft_dat=%3Cproquest_cross%3E2635708276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635708276&rft_id=info:pmid/&rfr_iscdi=true |