Paddy seed variety identification using T20-HOG and Haralick textural features
The seed is an inevitable element for agricultural and industrial production. The non-destructive paddy seed variety identification is essential to assure paddy purity and quality. This research is aimed at developing a computer vision-based system to identify paddy varieties using multiple heteroge...
Gespeichert in:
Veröffentlicht in: | Complex & Intelligent Systems 2022-02, Vol.8 (1), p.657-671 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 671 |
---|---|
container_issue | 1 |
container_start_page | 657 |
container_title | Complex & Intelligent Systems |
container_volume | 8 |
creator | Uddin, Machbah Islam, Mohammad Aminul Shajalal, Md Hossain, Mohammad Afzal Yousuf, Md. Sayeed Iftekhar |
description | The seed is an inevitable element for agricultural and industrial production. The non-destructive paddy seed variety identification is essential to assure paddy purity and quality. This research is aimed at developing a computer vision-based system to identify paddy varieties using multiple heterogeneous features, exploiting textural, external, and physical properties. We captured the paddy seed images without any fixed setup to make the system user friendly at both industry and farmer levels, which can lead to illumination problems in the images. To overcome this problem, we introduced a modified histogram oriented gradient (T20-HOG) feature that can describe the illumination, scale, and rotational variations of a paddy image. We also utilized the existing Haralick and traditional features and the dimensionality of the features is reduced by the Lasso feature selection technique. The selected features are used to train the feed-forward neural network (FNN) to predict the paddy variety. The experiments conducted on two different datasets: BDRICE, and VNRICE. Results of our method are shown in terms of four standard evaluation metrics, namely, accuracy, precision, recall, and F_1 score, and achieved 99.28%, 98.64%, 98.48%, and 98.56% score, respectively. We also compared our system efficiency with existing studies. The experimental results demonstrate that our proposed features are effective to identify paddy variety and achieved a new state-of-the-art performance. And we also observed that our newly proposed T20-HOG features have a major impact on overall system performance. |
doi_str_mv | 10.1007/s40747-021-00545-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2635338466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695675485</galeid><sourcerecordid>A695675485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e2033ddeeee58c421feb929e46e240b13163f570599471404b89c5a5690f5a973</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxRdRULRfwFPAc3Tyf3MsolYo1kM9h3R3UlLrbk22Yr-90RW8OXOYx_B-k_Cq6pLBNQMwN1mCkYYCZxRASUXhqDrjzNZUgxLHP9pSqYQ-rSY5bwCAGVML4GfV07Nv2wPJiC358CnicCCxxW6IITZ-iH1H9jl2a7LkQGeLB-K7lsx88tvYvJIBP4d90SSgLwLzRXUS_Dbj5HeeVy_3d8vbGZ0vHh5vp3PaSKEHihyEaFsspepGchZwZblFqZFLWDHBtAjKgLJWGiZBrmrbKK-0haC8NeK8uhrv7lL_vsc8uE2_T1150nEtlBC11Lq4rkfX2m_RxS70Q_JN6RbfYtN3GGLZT7VV2ihZqwLwEWhSn3PC4HYpvvl0cAzcd9ZuzNqVrN1P1g4KJEYoF3O3xvT3l3-oL1Ibf0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635338466</pqid></control><display><type>article</type><title>Paddy seed variety identification using T20-HOG and Haralick textural features</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Uddin, Machbah ; Islam, Mohammad Aminul ; Shajalal, Md ; Hossain, Mohammad Afzal ; Yousuf, Md. Sayeed Iftekhar</creator><creatorcontrib>Uddin, Machbah ; Islam, Mohammad Aminul ; Shajalal, Md ; Hossain, Mohammad Afzal ; Yousuf, Md. Sayeed Iftekhar</creatorcontrib><description>The seed is an inevitable element for agricultural and industrial production. The non-destructive paddy seed variety identification is essential to assure paddy purity and quality. This research is aimed at developing a computer vision-based system to identify paddy varieties using multiple heterogeneous features, exploiting textural, external, and physical properties. We captured the paddy seed images without any fixed setup to make the system user friendly at both industry and farmer levels, which can lead to illumination problems in the images. To overcome this problem, we introduced a modified histogram oriented gradient (T20-HOG) feature that can describe the illumination, scale, and rotational variations of a paddy image. We also utilized the existing Haralick and traditional features and the dimensionality of the features is reduced by the Lasso feature selection technique. The selected features are used to train the feed-forward neural network (FNN) to predict the paddy variety. The experiments conducted on two different datasets: BDRICE, and VNRICE. Results of our method are shown in terms of four standard evaluation metrics, namely, accuracy, precision, recall, and F_1 score, and achieved 99.28%, 98.64%, 98.48%, and 98.56% score, respectively. We also compared our system efficiency with existing studies. The experimental results demonstrate that our proposed features are effective to identify paddy variety and achieved a new state-of-the-art performance. And we also observed that our newly proposed T20-HOG features have a major impact on overall system performance.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-021-00545-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Agricultural production ; Agriculture ; Classification ; Complexity ; Computational Intelligence ; Computer science ; Computer vision ; Data Structures and Information Theory ; Datasets ; Engineering ; Feature selection ; Histograms ; Identification ; Illumination ; Intelligent systems ; Literature reviews ; Machine learning ; Machine vision ; Morphology ; Neural networks ; Original Article ; Physical properties ; Rice ; Seeds ; Trends ; Vision systems</subject><ispartof>Complex & Intelligent Systems, 2022-02, Vol.8 (1), p.657-671</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e2033ddeeee58c421feb929e46e240b13163f570599471404b89c5a5690f5a973</citedby><cites>FETCH-LOGICAL-c436t-e2033ddeeee58c421feb929e46e240b13163f570599471404b89c5a5690f5a973</cites><orcidid>0000-0002-5809-552X ; 0000-0002-9011-708X ; 0000-0003-0918-8532 ; 0000-0002-1572-8606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40747-021-00545-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s40747-021-00545-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27903,27904,41099,41467,42168,42536,51297,51554</link.rule.ids></links><search><creatorcontrib>Uddin, Machbah</creatorcontrib><creatorcontrib>Islam, Mohammad Aminul</creatorcontrib><creatorcontrib>Shajalal, Md</creatorcontrib><creatorcontrib>Hossain, Mohammad Afzal</creatorcontrib><creatorcontrib>Yousuf, Md. Sayeed Iftekhar</creatorcontrib><title>Paddy seed variety identification using T20-HOG and Haralick textural features</title><title>Complex & Intelligent Systems</title><addtitle>Complex Intell. Syst</addtitle><description>The seed is an inevitable element for agricultural and industrial production. The non-destructive paddy seed variety identification is essential to assure paddy purity and quality. This research is aimed at developing a computer vision-based system to identify paddy varieties using multiple heterogeneous features, exploiting textural, external, and physical properties. We captured the paddy seed images without any fixed setup to make the system user friendly at both industry and farmer levels, which can lead to illumination problems in the images. To overcome this problem, we introduced a modified histogram oriented gradient (T20-HOG) feature that can describe the illumination, scale, and rotational variations of a paddy image. We also utilized the existing Haralick and traditional features and the dimensionality of the features is reduced by the Lasso feature selection technique. The selected features are used to train the feed-forward neural network (FNN) to predict the paddy variety. The experiments conducted on two different datasets: BDRICE, and VNRICE. Results of our method are shown in terms of four standard evaluation metrics, namely, accuracy, precision, recall, and F_1 score, and achieved 99.28%, 98.64%, 98.48%, and 98.56% score, respectively. We also compared our system efficiency with existing studies. The experimental results demonstrate that our proposed features are effective to identify paddy variety and achieved a new state-of-the-art performance. And we also observed that our newly proposed T20-HOG features have a major impact on overall system performance.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Classification</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Computer science</subject><subject>Computer vision</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>Histograms</subject><subject>Identification</subject><subject>Illumination</subject><subject>Intelligent systems</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Machine vision</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Physical properties</subject><subject>Rice</subject><subject>Seeds</subject><subject>Trends</subject><subject>Vision systems</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxRdRULRfwFPAc3Tyf3MsolYo1kM9h3R3UlLrbk22Yr-90RW8OXOYx_B-k_Cq6pLBNQMwN1mCkYYCZxRASUXhqDrjzNZUgxLHP9pSqYQ-rSY5bwCAGVML4GfV07Nv2wPJiC358CnicCCxxW6IITZ-iH1H9jl2a7LkQGeLB-K7lsx88tvYvJIBP4d90SSgLwLzRXUS_Dbj5HeeVy_3d8vbGZ0vHh5vp3PaSKEHihyEaFsspepGchZwZblFqZFLWDHBtAjKgLJWGiZBrmrbKK-0haC8NeK8uhrv7lL_vsc8uE2_T1150nEtlBC11Lq4rkfX2m_RxS70Q_JN6RbfYtN3GGLZT7VV2ihZqwLwEWhSn3PC4HYpvvl0cAzcd9ZuzNqVrN1P1g4KJEYoF3O3xvT3l3-oL1Ibf0c</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Uddin, Machbah</creator><creator>Islam, Mohammad Aminul</creator><creator>Shajalal, Md</creator><creator>Hossain, Mohammad Afzal</creator><creator>Yousuf, Md. Sayeed Iftekhar</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5809-552X</orcidid><orcidid>https://orcid.org/0000-0002-9011-708X</orcidid><orcidid>https://orcid.org/0000-0003-0918-8532</orcidid><orcidid>https://orcid.org/0000-0002-1572-8606</orcidid></search><sort><creationdate>20220201</creationdate><title>Paddy seed variety identification using T20-HOG and Haralick textural features</title><author>Uddin, Machbah ; Islam, Mohammad Aminul ; Shajalal, Md ; Hossain, Mohammad Afzal ; Yousuf, Md. Sayeed Iftekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e2033ddeeee58c421feb929e46e240b13163f570599471404b89c5a5690f5a973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Classification</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Computer science</topic><topic>Computer vision</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>Histograms</topic><topic>Identification</topic><topic>Illumination</topic><topic>Intelligent systems</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Machine vision</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Physical properties</topic><topic>Rice</topic><topic>Seeds</topic><topic>Trends</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uddin, Machbah</creatorcontrib><creatorcontrib>Islam, Mohammad Aminul</creatorcontrib><creatorcontrib>Shajalal, Md</creatorcontrib><creatorcontrib>Hossain, Mohammad Afzal</creatorcontrib><creatorcontrib>Yousuf, Md. Sayeed Iftekhar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex & Intelligent Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uddin, Machbah</au><au>Islam, Mohammad Aminul</au><au>Shajalal, Md</au><au>Hossain, Mohammad Afzal</au><au>Yousuf, Md. Sayeed Iftekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paddy seed variety identification using T20-HOG and Haralick textural features</atitle><jtitle>Complex & Intelligent Systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>657</spage><epage>671</epage><pages>657-671</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>The seed is an inevitable element for agricultural and industrial production. The non-destructive paddy seed variety identification is essential to assure paddy purity and quality. This research is aimed at developing a computer vision-based system to identify paddy varieties using multiple heterogeneous features, exploiting textural, external, and physical properties. We captured the paddy seed images without any fixed setup to make the system user friendly at both industry and farmer levels, which can lead to illumination problems in the images. To overcome this problem, we introduced a modified histogram oriented gradient (T20-HOG) feature that can describe the illumination, scale, and rotational variations of a paddy image. We also utilized the existing Haralick and traditional features and the dimensionality of the features is reduced by the Lasso feature selection technique. The selected features are used to train the feed-forward neural network (FNN) to predict the paddy variety. The experiments conducted on two different datasets: BDRICE, and VNRICE. Results of our method are shown in terms of four standard evaluation metrics, namely, accuracy, precision, recall, and F_1 score, and achieved 99.28%, 98.64%, 98.48%, and 98.56% score, respectively. We also compared our system efficiency with existing studies. The experimental results demonstrate that our proposed features are effective to identify paddy variety and achieved a new state-of-the-art performance. And we also observed that our newly proposed T20-HOG features have a major impact on overall system performance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40747-021-00545-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5809-552X</orcidid><orcidid>https://orcid.org/0000-0002-9011-708X</orcidid><orcidid>https://orcid.org/0000-0003-0918-8532</orcidid><orcidid>https://orcid.org/0000-0002-1572-8606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-4536 |
ispartof | Complex & Intelligent Systems, 2022-02, Vol.8 (1), p.657-671 |
issn | 2199-4536 2198-6053 |
language | eng |
recordid | cdi_proquest_journals_2635338466 |
source | DOAJ Directory of Open Access Journals; SpringerLink Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Agricultural production Agriculture Classification Complexity Computational Intelligence Computer science Computer vision Data Structures and Information Theory Datasets Engineering Feature selection Histograms Identification Illumination Intelligent systems Literature reviews Machine learning Machine vision Morphology Neural networks Original Article Physical properties Rice Seeds Trends Vision systems |
title | Paddy seed variety identification using T20-HOG and Haralick textural features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paddy%20seed%20variety%20identification%20using%20T20-HOG%20and%20Haralick%20textural%20features&rft.jtitle=Complex%20&%20Intelligent%20Systems&rft.au=Uddin,%20Machbah&rft.date=2022-02-01&rft.volume=8&rft.issue=1&rft.spage=657&rft.epage=671&rft.pages=657-671&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-021-00545-0&rft_dat=%3Cgale_proqu%3EA695675485%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635338466&rft_id=info:pmid/&rft_galeid=A695675485&rfr_iscdi=true |