Machine learning-driven automatic storage space recommendation for object-based cloud storage system
An object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine lea...
Gespeichert in:
Veröffentlicht in: | Complex & Intelligent Systems 2022-02, Vol.8 (1), p.489-505 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 505 |
---|---|
container_issue | 1 |
container_start_page | 489 |
container_title | Complex & Intelligent Systems |
container_volume | 8 |
creator | Mondal, Anindita Sarkar Mukhopadhyay, Anirban Chattopadhyay, Samiran |
description | An object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine learning can help make a storage system automatic. This article proposes a classification engine framework for this purpose by utilizing a machine learning strategy. A feature selection approach wrapped with a classifier is proposed to automatically predict the proper storage space for the incoming big data. It helps build an automatic storage space recommendation system for an object-based cloud storage platform. To find out a suitable combination of feature selection algorithms and classifiers for the proposed classification engine, a comparative study of different supervised feature selection algorithms (i.e., Fisher score, F-score, Lll21) from three categories (similarity, statistical, sparse learning) associated with various classifiers (i.e., SVM,
K
-NN, Neural Network) is performed. We illustrate our study using RSoS system as it provides a cloud storage platform for the healthcare data as experimental big data by considering its variety property. The experiments confirm that Lll21 feature selection combined with
K
-NN classifier provides better performance than the others. |
doi_str_mv | 10.1007/s40747-021-00517-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2635338428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695675496</galeid><sourcerecordid>A695675496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-fadc5aca8c9c5a5e3fcec1b7a887e7a2ade05caed5f6d8e7ea23d2aeeaa9f87c3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsoKOoX8FTwHE2TpkmPi_gPFC96DrOTydplm6xJV_DbG7eCN08zzLzfvIFXVRcNv2o419e55brVjIuGca4azdqD6kQ0vWEdV_Jw3_esVbI7rs5zXnPOG62N5OKkcs-A70OgekOQwhBWzKXhk0INuymOMA1Y5ykmWFGdt4BUJ8I4jhRc2cVQ-5jquFwTTmwJmVyNm7hzf8xXnmg8q448bDKd_9bT6u3u9vXmgT293D_eLJ4YtrKbmAeHChAM9qUqkh4Jm6UGYzRpEOCIKwRyynfOkCYQ0gkgAui90ShPq8v57jbFjx3lya7jLoViaUUnlZSmFaaormbVCjZkh-DjlIorlvPjgDGQH8p80fWq06rtuwKIGcAUc07k7TYNI6Qv23D7k4CdE7AlAbtPwLYFkjOUizisKP398g_1DfqtjIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635338428</pqid></control><display><type>article</type><title>Machine learning-driven automatic storage space recommendation for object-based cloud storage system</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Mondal, Anindita Sarkar ; Mukhopadhyay, Anirban ; Chattopadhyay, Samiran</creator><creatorcontrib>Mondal, Anindita Sarkar ; Mukhopadhyay, Anirban ; Chattopadhyay, Samiran</creatorcontrib><description>An object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine learning can help make a storage system automatic. This article proposes a classification engine framework for this purpose by utilizing a machine learning strategy. A feature selection approach wrapped with a classifier is proposed to automatically predict the proper storage space for the incoming big data. It helps build an automatic storage space recommendation system for an object-based cloud storage platform. To find out a suitable combination of feature selection algorithms and classifiers for the proposed classification engine, a comparative study of different supervised feature selection algorithms (i.e., Fisher score, F-score, Lll21) from three categories (similarity, statistical, sparse learning) associated with various classifiers (i.e., SVM,
K
-NN, Neural Network) is performed. We illustrate our study using RSoS system as it provides a cloud storage platform for the healthcare data as experimental big data by considering its variety property. The experiments confirm that Lll21 feature selection combined with
K
-NN classifier provides better performance than the others.</description><identifier>ISSN: 2199-4536</identifier><identifier>EISSN: 2198-6053</identifier><identifier>DOI: 10.1007/s40747-021-00517-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Big Data ; Classification ; Classifiers ; Cloud computing ; Comparative studies ; Complexity ; Computational Intelligence ; Data storage ; Data Structures and Information Theory ; Engineering ; Feature selection ; High density storage ; Information storage and retrieval ; Machine learning ; Neural networks ; Original Article ; Recommender systems</subject><ispartof>Complex & Intelligent Systems, 2022-02, Vol.8 (1), p.489-505</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-fadc5aca8c9c5a5e3fcec1b7a887e7a2ade05caed5f6d8e7ea23d2aeeaa9f87c3</citedby><cites>FETCH-LOGICAL-c436t-fadc5aca8c9c5a5e3fcec1b7a887e7a2ade05caed5f6d8e7ea23d2aeeaa9f87c3</cites><orcidid>0000-0002-3247-357X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40747-021-00517-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40747-021-00517-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Mondal, Anindita Sarkar</creatorcontrib><creatorcontrib>Mukhopadhyay, Anirban</creatorcontrib><creatorcontrib>Chattopadhyay, Samiran</creatorcontrib><title>Machine learning-driven automatic storage space recommendation for object-based cloud storage system</title><title>Complex & Intelligent Systems</title><addtitle>Complex Intell. Syst</addtitle><description>An object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine learning can help make a storage system automatic. This article proposes a classification engine framework for this purpose by utilizing a machine learning strategy. A feature selection approach wrapped with a classifier is proposed to automatically predict the proper storage space for the incoming big data. It helps build an automatic storage space recommendation system for an object-based cloud storage platform. To find out a suitable combination of feature selection algorithms and classifiers for the proposed classification engine, a comparative study of different supervised feature selection algorithms (i.e., Fisher score, F-score, Lll21) from three categories (similarity, statistical, sparse learning) associated with various classifiers (i.e., SVM,
K
-NN, Neural Network) is performed. We illustrate our study using RSoS system as it provides a cloud storage platform for the healthcare data as experimental big data by considering its variety property. The experiments confirm that Lll21 feature selection combined with
K
-NN classifier provides better performance than the others.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Cloud computing</subject><subject>Comparative studies</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Data storage</subject><subject>Data Structures and Information Theory</subject><subject>Engineering</subject><subject>Feature selection</subject><subject>High density storage</subject><subject>Information storage and retrieval</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Recommender systems</subject><issn>2199-4536</issn><issn>2198-6053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9LxDAQxYsoKOoX8FTwHE2TpkmPi_gPFC96DrOTydplm6xJV_DbG7eCN08zzLzfvIFXVRcNv2o419e55brVjIuGca4azdqD6kQ0vWEdV_Jw3_esVbI7rs5zXnPOG62N5OKkcs-A70OgekOQwhBWzKXhk0INuymOMA1Y5ykmWFGdt4BUJ8I4jhRc2cVQ-5jquFwTTmwJmVyNm7hzf8xXnmg8q448bDKd_9bT6u3u9vXmgT293D_eLJ4YtrKbmAeHChAM9qUqkh4Jm6UGYzRpEOCIKwRyynfOkCYQ0gkgAui90ShPq8v57jbFjx3lya7jLoViaUUnlZSmFaaormbVCjZkh-DjlIorlvPjgDGQH8p80fWq06rtuwKIGcAUc07k7TYNI6Qv23D7k4CdE7AlAbtPwLYFkjOUizisKP398g_1DfqtjIo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Mondal, Anindita Sarkar</creator><creator>Mukhopadhyay, Anirban</creator><creator>Chattopadhyay, Samiran</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3247-357X</orcidid></search><sort><creationdate>20220201</creationdate><title>Machine learning-driven automatic storage space recommendation for object-based cloud storage system</title><author>Mondal, Anindita Sarkar ; Mukhopadhyay, Anirban ; Chattopadhyay, Samiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-fadc5aca8c9c5a5e3fcec1b7a887e7a2ade05caed5f6d8e7ea23d2aeeaa9f87c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Cloud computing</topic><topic>Comparative studies</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Data storage</topic><topic>Data Structures and Information Theory</topic><topic>Engineering</topic><topic>Feature selection</topic><topic>High density storage</topic><topic>Information storage and retrieval</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mondal, Anindita Sarkar</creatorcontrib><creatorcontrib>Mukhopadhyay, Anirban</creatorcontrib><creatorcontrib>Chattopadhyay, Samiran</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Complex & Intelligent Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mondal, Anindita Sarkar</au><au>Mukhopadhyay, Anirban</au><au>Chattopadhyay, Samiran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-driven automatic storage space recommendation for object-based cloud storage system</atitle><jtitle>Complex & Intelligent Systems</jtitle><stitle>Complex Intell. Syst</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>489</spage><epage>505</epage><pages>489-505</pages><issn>2199-4536</issn><eissn>2198-6053</eissn><abstract>An object-based cloud storage system is a storage platform where big data is managed through the internet and data is considered as an object. A smart storage system should be able to handle the big data variety property by recommending the storage space for each data type automatically. Machine learning can help make a storage system automatic. This article proposes a classification engine framework for this purpose by utilizing a machine learning strategy. A feature selection approach wrapped with a classifier is proposed to automatically predict the proper storage space for the incoming big data. It helps build an automatic storage space recommendation system for an object-based cloud storage platform. To find out a suitable combination of feature selection algorithms and classifiers for the proposed classification engine, a comparative study of different supervised feature selection algorithms (i.e., Fisher score, F-score, Lll21) from three categories (similarity, statistical, sparse learning) associated with various classifiers (i.e., SVM,
K
-NN, Neural Network) is performed. We illustrate our study using RSoS system as it provides a cloud storage platform for the healthcare data as experimental big data by considering its variety property. The experiments confirm that Lll21 feature selection combined with
K
-NN classifier provides better performance than the others.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40747-021-00517-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-3247-357X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-4536 |
ispartof | Complex & Intelligent Systems, 2022-02, Vol.8 (1), p.489-505 |
issn | 2199-4536 2198-6053 |
language | eng |
recordid | cdi_proquest_journals_2635338428 |
source | DOAJ Directory of Open Access Journals; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | Algorithms Big Data Classification Classifiers Cloud computing Comparative studies Complexity Computational Intelligence Data storage Data Structures and Information Theory Engineering Feature selection High density storage Information storage and retrieval Machine learning Neural networks Original Article Recommender systems |
title | Machine learning-driven automatic storage space recommendation for object-based cloud storage system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-driven%20automatic%20storage%20space%20recommendation%20for%20object-based%20cloud%20storage%20system&rft.jtitle=Complex%20&%20Intelligent%20Systems&rft.au=Mondal,%20Anindita%20Sarkar&rft.date=2022-02-01&rft.volume=8&rft.issue=1&rft.spage=489&rft.epage=505&rft.pages=489-505&rft.issn=2199-4536&rft.eissn=2198-6053&rft_id=info:doi/10.1007/s40747-021-00517-4&rft_dat=%3Cgale_proqu%3EA695675496%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635338428&rft_id=info:pmid/&rft_galeid=A695675496&rfr_iscdi=true |