NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair

Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPG Asia materials 2022-12, Vol.14 (1), p.20, Article 20
Hauptverfasser: Chen, Zheng, Wang, Lin, Chen, Chichi, Sun, Jie, Luo, Junchao, Cui, Wenguo, Zhu, Can, Zhou, Xiaozhong, Liu, Xingzhi, Yang, Huilin, Shi, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 20
container_title NPG Asia materials
container_volume 14
creator Chen, Zheng
Wang, Lin
Chen, Chichi
Sun, Jie
Luo, Junchao
Cui, Wenguo
Zhu, Can
Zhou, Xiaozhong
Liu, Xingzhi
Yang, Huilin
Shi, Qin
description Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI. A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.
doi_str_mv 10.1038/s41427-022-00368-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635334505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635334505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bXZ7LEWrUPWgnkN2k7Qp22addKX99kZX9OZphpn3hnk_hC4ZvWZUVDdJMslLQjknlApVEXWCRqyqJJG0KE9_ezk9R5OUNpRSppSsCjlC66eXObEOwoez2B32YBrXtn1rAG_NHsKBbKMNPuTtwrWPM7w-Wogr12Ifaoh9wqkx3sfWJuwj4NSFnWlxE8HisNv0cMTgOhPgAp150yY3-alj9HZ3-zq_J8vnxcN8tiSNUGJPpko4pWrJZQ4llCuV5VVTs6JgU5FnOQRreCWcLWuljKy9o8KakpVSWc9KMUZXw90O4nvv0l5vYg_5p6S5EoUQsqBFVvFB1UBMCZzXHYStgaNmVH9B1QNUnaHqb6haZZMYTCmLdysHf6f_cX0CtQF5uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635334505</pqid></control><display><type>article</type><title>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Zheng ; Wang, Lin ; Chen, Chichi ; Sun, Jie ; Luo, Junchao ; Cui, Wenguo ; Zhu, Can ; Zhou, Xiaozhong ; Liu, Xingzhi ; Yang, Huilin ; Shi, Qin</creator><creatorcontrib>Chen, Zheng ; Wang, Lin ; Chen, Chichi ; Sun, Jie ; Luo, Junchao ; Cui, Wenguo ; Zhu, Can ; Zhou, Xiaozhong ; Liu, Xingzhi ; Yang, Huilin ; Shi, Qin</creatorcontrib><description>Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI. A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-022-00368-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>631/61/54 ; 631/61/54/990 ; Biocompatibility ; Biomaterials ; Cell adhesion ; Chemistry and Materials Science ; Differentiation ; Electrospinning ; Energy Systems ; Extracellular matrix ; Hydrogels ; Inflammatory response ; Injury prevention ; Macrophages ; Materials Science ; Mechanical properties ; Optical and Electronic Materials ; Regeneration (physiology) ; Repair ; Scaffolds ; Scars ; Spinal cord injuries ; Stem cells ; Structural Materials ; Surface and Interface Science ; Thin Films</subject><ispartof>NPG Asia materials, 2022-12, Vol.14 (1), p.20, Article 20</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</citedby><cites>FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</cites><orcidid>0000-0002-6938-9582 ; 0000-0002-9403-752X ; 0000-0001-8134-4267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-022-00368-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-022-00368-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27926,27927,41122,42191,51578</link.rule.ids></links><search><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Chen, Chichi</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Luo, Junchao</creatorcontrib><creatorcontrib>Cui, Wenguo</creatorcontrib><creatorcontrib>Zhu, Can</creatorcontrib><creatorcontrib>Zhou, Xiaozhong</creatorcontrib><creatorcontrib>Liu, Xingzhi</creatorcontrib><creatorcontrib>Yang, Huilin</creatorcontrib><creatorcontrib>Shi, Qin</creatorcontrib><title>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI. A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.</description><subject>631/61/54</subject><subject>631/61/54/990</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Cell adhesion</subject><subject>Chemistry and Materials Science</subject><subject>Differentiation</subject><subject>Electrospinning</subject><subject>Energy Systems</subject><subject>Extracellular matrix</subject><subject>Hydrogels</subject><subject>Inflammatory response</subject><subject>Injury prevention</subject><subject>Macrophages</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Optical and Electronic Materials</subject><subject>Regeneration (physiology)</subject><subject>Repair</subject><subject>Scaffolds</subject><subject>Scars</subject><subject>Spinal cord injuries</subject><subject>Stem cells</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bXZ7LEWrUPWgnkN2k7Qp22addKX99kZX9OZphpn3hnk_hC4ZvWZUVDdJMslLQjknlApVEXWCRqyqJJG0KE9_ezk9R5OUNpRSppSsCjlC66eXObEOwoez2B32YBrXtn1rAG_NHsKBbKMNPuTtwrWPM7w-Wogr12Ifaoh9wqkx3sfWJuwj4NSFnWlxE8HisNv0cMTgOhPgAp150yY3-alj9HZ3-zq_J8vnxcN8tiSNUGJPpko4pWrJZQ4llCuV5VVTs6JgU5FnOQRreCWcLWuljKy9o8KakpVSWc9KMUZXw90O4nvv0l5vYg_5p6S5EoUQsqBFVvFB1UBMCZzXHYStgaNmVH9B1QNUnaHqb6haZZMYTCmLdysHf6f_cX0CtQF5uQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Zheng</creator><creator>Wang, Lin</creator><creator>Chen, Chichi</creator><creator>Sun, Jie</creator><creator>Luo, Junchao</creator><creator>Cui, Wenguo</creator><creator>Zhu, Can</creator><creator>Zhou, Xiaozhong</creator><creator>Liu, Xingzhi</creator><creator>Yang, Huilin</creator><creator>Shi, Qin</creator><general>Springer Japan</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6938-9582</orcidid><orcidid>https://orcid.org/0000-0002-9403-752X</orcidid><orcidid>https://orcid.org/0000-0001-8134-4267</orcidid></search><sort><creationdate>20221201</creationdate><title>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</title><author>Chen, Zheng ; Wang, Lin ; Chen, Chichi ; Sun, Jie ; Luo, Junchao ; Cui, Wenguo ; Zhu, Can ; Zhou, Xiaozhong ; Liu, Xingzhi ; Yang, Huilin ; Shi, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/61/54</topic><topic>631/61/54/990</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Cell adhesion</topic><topic>Chemistry and Materials Science</topic><topic>Differentiation</topic><topic>Electrospinning</topic><topic>Energy Systems</topic><topic>Extracellular matrix</topic><topic>Hydrogels</topic><topic>Inflammatory response</topic><topic>Injury prevention</topic><topic>Macrophages</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Optical and Electronic Materials</topic><topic>Regeneration (physiology)</topic><topic>Repair</topic><topic>Scaffolds</topic><topic>Scars</topic><topic>Spinal cord injuries</topic><topic>Stem cells</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Chen, Chichi</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Luo, Junchao</creatorcontrib><creatorcontrib>Cui, Wenguo</creatorcontrib><creatorcontrib>Zhu, Can</creatorcontrib><creatorcontrib>Zhou, Xiaozhong</creatorcontrib><creatorcontrib>Liu, Xingzhi</creatorcontrib><creatorcontrib>Yang, Huilin</creatorcontrib><creatorcontrib>Shi, Qin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng</au><au>Wang, Lin</au><au>Chen, Chichi</au><au>Sun, Jie</au><au>Luo, Junchao</au><au>Cui, Wenguo</au><au>Zhu, Can</au><au>Zhou, Xiaozhong</au><au>Liu, Xingzhi</au><au>Yang, Huilin</au><au>Shi, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>20</spage><pages>20-</pages><artnum>20</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI. A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1038/s41427-022-00368-6</doi><orcidid>https://orcid.org/0000-0002-6938-9582</orcidid><orcidid>https://orcid.org/0000-0002-9403-752X</orcidid><orcidid>https://orcid.org/0000-0001-8134-4267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1884-4049
ispartof NPG Asia materials, 2022-12, Vol.14 (1), p.20, Article 20
issn 1884-4049
1884-4057
language eng
recordid cdi_proquest_journals_2635334505
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry
subjects 631/61/54
631/61/54/990
Biocompatibility
Biomaterials
Cell adhesion
Chemistry and Materials Science
Differentiation
Electrospinning
Energy Systems
Extracellular matrix
Hydrogels
Inflammatory response
Injury prevention
Macrophages
Materials Science
Mechanical properties
Optical and Electronic Materials
Regeneration (physiology)
Repair
Scaffolds
Scars
Spinal cord injuries
Stem cells
Structural Materials
Surface and Interface Science
Thin Films
title NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NSC-derived%20extracellular%20matrix-modified%20GelMA%20hydrogel%20fibrous%20scaffolds%20for%20spinal%20cord%20injury%20repair&rft.jtitle=NPG%20Asia%20materials&rft.au=Chen,%20Zheng&rft.date=2022-12-01&rft.volume=14&rft.issue=1&rft.spage=20&rft.pages=20-&rft.artnum=20&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-022-00368-6&rft_dat=%3Cproquest_cross%3E2635334505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635334505&rft_id=info:pmid/&rfr_iscdi=true