NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair
Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that...
Gespeichert in:
Veröffentlicht in: | NPG Asia materials 2022-12, Vol.14 (1), p.20, Article 20 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | NPG Asia materials |
container_volume | 14 |
creator | Chen, Zheng Wang, Lin Chen, Chichi Sun, Jie Luo, Junchao Cui, Wenguo Zhu, Can Zhou, Xiaozhong Liu, Xingzhi Yang, Huilin Shi, Qin |
description | Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI.
A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application. |
doi_str_mv | 10.1038/s41427-022-00368-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635334505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635334505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bXZ7LEWrUPWgnkN2k7Qp22addKX99kZX9OZphpn3hnk_hC4ZvWZUVDdJMslLQjknlApVEXWCRqyqJJG0KE9_ezk9R5OUNpRSppSsCjlC66eXObEOwoez2B32YBrXtn1rAG_NHsKBbKMNPuTtwrWPM7w-Wogr12Ifaoh9wqkx3sfWJuwj4NSFnWlxE8HisNv0cMTgOhPgAp150yY3-alj9HZ3-zq_J8vnxcN8tiSNUGJPpko4pWrJZQ4llCuV5VVTs6JgU5FnOQRreCWcLWuljKy9o8KakpVSWc9KMUZXw90O4nvv0l5vYg_5p6S5EoUQsqBFVvFB1UBMCZzXHYStgaNmVH9B1QNUnaHqb6haZZMYTCmLdysHf6f_cX0CtQF5uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635334505</pqid></control><display><type>article</type><title>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Zheng ; Wang, Lin ; Chen, Chichi ; Sun, Jie ; Luo, Junchao ; Cui, Wenguo ; Zhu, Can ; Zhou, Xiaozhong ; Liu, Xingzhi ; Yang, Huilin ; Shi, Qin</creator><creatorcontrib>Chen, Zheng ; Wang, Lin ; Chen, Chichi ; Sun, Jie ; Luo, Junchao ; Cui, Wenguo ; Zhu, Can ; Zhou, Xiaozhong ; Liu, Xingzhi ; Yang, Huilin ; Shi, Qin</creatorcontrib><description>Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI.
A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.</description><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-022-00368-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>631/61/54 ; 631/61/54/990 ; Biocompatibility ; Biomaterials ; Cell adhesion ; Chemistry and Materials Science ; Differentiation ; Electrospinning ; Energy Systems ; Extracellular matrix ; Hydrogels ; Inflammatory response ; Injury prevention ; Macrophages ; Materials Science ; Mechanical properties ; Optical and Electronic Materials ; Regeneration (physiology) ; Repair ; Scaffolds ; Scars ; Spinal cord injuries ; Stem cells ; Structural Materials ; Surface and Interface Science ; Thin Films</subject><ispartof>NPG Asia materials, 2022-12, Vol.14 (1), p.20, Article 20</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</citedby><cites>FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</cites><orcidid>0000-0002-6938-9582 ; 0000-0002-9403-752X ; 0000-0001-8134-4267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41427-022-00368-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41427-022-00368-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,27926,27927,41122,42191,51578</link.rule.ids></links><search><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Chen, Chichi</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Luo, Junchao</creatorcontrib><creatorcontrib>Cui, Wenguo</creatorcontrib><creatorcontrib>Zhu, Can</creatorcontrib><creatorcontrib>Zhou, Xiaozhong</creatorcontrib><creatorcontrib>Liu, Xingzhi</creatorcontrib><creatorcontrib>Yang, Huilin</creatorcontrib><creatorcontrib>Shi, Qin</creatorcontrib><title>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI.
A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.</description><subject>631/61/54</subject><subject>631/61/54/990</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Cell adhesion</subject><subject>Chemistry and Materials Science</subject><subject>Differentiation</subject><subject>Electrospinning</subject><subject>Energy Systems</subject><subject>Extracellular matrix</subject><subject>Hydrogels</subject><subject>Inflammatory response</subject><subject>Injury prevention</subject><subject>Macrophages</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Optical and Electronic Materials</subject><subject>Regeneration (physiology)</subject><subject>Repair</subject><subject>Scaffolds</subject><subject>Scars</subject><subject>Spinal cord injuries</subject><subject>Stem cells</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKeA52j-bXZ7LEWrUPWgnkN2k7Qp22addKX99kZX9OZphpn3hnk_hC4ZvWZUVDdJMslLQjknlApVEXWCRqyqJJG0KE9_ezk9R5OUNpRSppSsCjlC66eXObEOwoez2B32YBrXtn1rAG_NHsKBbKMNPuTtwrWPM7w-Wogr12Ifaoh9wqkx3sfWJuwj4NSFnWlxE8HisNv0cMTgOhPgAp150yY3-alj9HZ3-zq_J8vnxcN8tiSNUGJPpko4pWrJZQ4llCuV5VVTs6JgU5FnOQRreCWcLWuljKy9o8KakpVSWc9KMUZXw90O4nvv0l5vYg_5p6S5EoUQsqBFVvFB1UBMCZzXHYStgaNmVH9B1QNUnaHqb6haZZMYTCmLdysHf6f_cX0CtQF5uQ</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Zheng</creator><creator>Wang, Lin</creator><creator>Chen, Chichi</creator><creator>Sun, Jie</creator><creator>Luo, Junchao</creator><creator>Cui, Wenguo</creator><creator>Zhu, Can</creator><creator>Zhou, Xiaozhong</creator><creator>Liu, Xingzhi</creator><creator>Yang, Huilin</creator><creator>Shi, Qin</creator><general>Springer Japan</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6938-9582</orcidid><orcidid>https://orcid.org/0000-0002-9403-752X</orcidid><orcidid>https://orcid.org/0000-0001-8134-4267</orcidid></search><sort><creationdate>20221201</creationdate><title>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</title><author>Chen, Zheng ; Wang, Lin ; Chen, Chichi ; Sun, Jie ; Luo, Junchao ; Cui, Wenguo ; Zhu, Can ; Zhou, Xiaozhong ; Liu, Xingzhi ; Yang, Huilin ; Shi, Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-963e66b42441436e76d28cb1551934410491c283ed7b66a4bfe03da71746df173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/61/54</topic><topic>631/61/54/990</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Cell adhesion</topic><topic>Chemistry and Materials Science</topic><topic>Differentiation</topic><topic>Electrospinning</topic><topic>Energy Systems</topic><topic>Extracellular matrix</topic><topic>Hydrogels</topic><topic>Inflammatory response</topic><topic>Injury prevention</topic><topic>Macrophages</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Optical and Electronic Materials</topic><topic>Regeneration (physiology)</topic><topic>Repair</topic><topic>Scaffolds</topic><topic>Scars</topic><topic>Spinal cord injuries</topic><topic>Stem cells</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zheng</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Chen, Chichi</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Luo, Junchao</creatorcontrib><creatorcontrib>Cui, Wenguo</creatorcontrib><creatorcontrib>Zhu, Can</creatorcontrib><creatorcontrib>Zhou, Xiaozhong</creatorcontrib><creatorcontrib>Liu, Xingzhi</creatorcontrib><creatorcontrib>Yang, Huilin</creatorcontrib><creatorcontrib>Shi, Qin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zheng</au><au>Wang, Lin</au><au>Chen, Chichi</au><au>Sun, Jie</au><au>Luo, Junchao</au><au>Cui, Wenguo</au><au>Zhu, Can</au><au>Zhou, Xiaozhong</au><au>Liu, Xingzhi</au><au>Yang, Huilin</au><au>Shi, Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>20</spage><pages>20-</pages><artnum>20</artnum><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI.
A novel GelMA/ECM hydrogel fibrous scaffold was constructed via electrospinning and decellularization technique. The GelMA/ECM scaffold characterized by excellent mechanical properties and biocompatibility, can accelerate SCI repair by recruiting and promoting the differentiation of neural stem cells (NSCs), and reducing the proportion of M1-type macrophages. The study provides a promising system for SCI repair in clinical application.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1038/s41427-022-00368-6</doi><orcidid>https://orcid.org/0000-0002-6938-9582</orcidid><orcidid>https://orcid.org/0000-0002-9403-752X</orcidid><orcidid>https://orcid.org/0000-0001-8134-4267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1884-4049 |
ispartof | NPG Asia materials, 2022-12, Vol.14 (1), p.20, Article 20 |
issn | 1884-4049 1884-4057 |
language | eng |
recordid | cdi_proquest_journals_2635334505 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/61/54 631/61/54/990 Biocompatibility Biomaterials Cell adhesion Chemistry and Materials Science Differentiation Electrospinning Energy Systems Extracellular matrix Hydrogels Inflammatory response Injury prevention Macrophages Materials Science Mechanical properties Optical and Electronic Materials Regeneration (physiology) Repair Scaffolds Scars Spinal cord injuries Stem cells Structural Materials Surface and Interface Science Thin Films |
title | NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NSC-derived%20extracellular%20matrix-modified%20GelMA%20hydrogel%20fibrous%20scaffolds%20for%20spinal%20cord%20injury%20repair&rft.jtitle=NPG%20Asia%20materials&rft.au=Chen,%20Zheng&rft.date=2022-12-01&rft.volume=14&rft.issue=1&rft.spage=20&rft.pages=20-&rft.artnum=20&rft.issn=1884-4049&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-022-00368-6&rft_dat=%3Cproquest_cross%3E2635334505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635334505&rft_id=info:pmid/&rfr_iscdi=true |