Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits
We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure s...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2022-02, Vol.390, p.114444, Article 114444 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 114444 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 390 |
creator | Fabien, Maurice Guzmán, Johnny Neilan, Michael Zytoon, Ahmed |
description | We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level. |
doi_str_mv | 10.1016/j.cma.2021.114444 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635269082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782521006782</els_id><sourcerecordid>2635269082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHaWWKd4HCd2xApVvKRKIBXE0nKSCbhN42KnLd1xB27ISXBV1sxmpPnnn8dHyDmwETDIL2ejamFGnHEYAYgYB2QAShYJh1QdkgFjIkuk4tkxOQlhxmIo4AMyn7hN4nyNntZ2jf4NuwqTxiNSs1x692kXpreuC7RxnvbvSKe9m2OgUStbXFDX0VfnA25_vr5vjbcdNV1Nn9wG2zaWpqaMpbBsbR9OyVFj2oBnf3lIXm5vnsf3yeTx7mF8PUmqNFd9UippGBhsUsxKQCnqmgkBMivKjJXGFIUSKo-yEJJDZaRkRSmkYrIRCiSkQ3Kxnxtv_Fhh6PXMrXwXV2qepxnPC6Z47IJ9V-VdCB4bvfTxWb_VwPSOqZ7pyFTvmOo90-i52nswnr-26HWo7I5YbT1Wva6d_cf9C0BsgPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635269082</pqid></control><display><type>article</type><title>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fabien, Maurice ; Guzmán, Johnny ; Neilan, Michael ; Zytoon, Ahmed</creator><creatorcontrib>Fabien, Maurice ; Guzmán, Johnny ; Neilan, Michael ; Zytoon, Ahmed</creatorcontrib><description>We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2021.114444</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Approximation ; Divergence-free ; Graph theory ; Low-order ; Mathematical analysis ; Polynomials ; Powell–Sabin ; Worsey–Farin</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-02, Vol.390, p.114444, Article 114444</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</citedby><cites>FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2021.114444$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Fabien, Maurice</creatorcontrib><creatorcontrib>Guzmán, Johnny</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Zytoon, Ahmed</creatorcontrib><title>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</title><title>Computer methods in applied mechanics and engineering</title><description>We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.</description><subject>Apexes</subject><subject>Approximation</subject><subject>Divergence-free</subject><subject>Graph theory</subject><subject>Low-order</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Powell–Sabin</subject><subject>Worsey–Farin</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHaWWKd4HCd2xApVvKRKIBXE0nKSCbhN42KnLd1xB27ISXBV1sxmpPnnn8dHyDmwETDIL2ejamFGnHEYAYgYB2QAShYJh1QdkgFjIkuk4tkxOQlhxmIo4AMyn7hN4nyNntZ2jf4NuwqTxiNSs1x692kXpreuC7RxnvbvSKe9m2OgUStbXFDX0VfnA25_vr5vjbcdNV1Nn9wG2zaWpqaMpbBsbR9OyVFj2oBnf3lIXm5vnsf3yeTx7mF8PUmqNFd9UippGBhsUsxKQCnqmgkBMivKjJXGFIUSKo-yEJJDZaRkRSmkYrIRCiSkQ3Kxnxtv_Fhh6PXMrXwXV2qepxnPC6Z47IJ9V-VdCB4bvfTxWb_VwPSOqZ7pyFTvmOo90-i52nswnr-26HWo7I5YbT1Wva6d_cf9C0BsgPU</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Fabien, Maurice</creator><creator>Guzmán, Johnny</creator><creator>Neilan, Michael</creator><creator>Zytoon, Ahmed</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220215</creationdate><title>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</title><author>Fabien, Maurice ; Guzmán, Johnny ; Neilan, Michael ; Zytoon, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Approximation</topic><topic>Divergence-free</topic><topic>Graph theory</topic><topic>Low-order</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Powell–Sabin</topic><topic>Worsey–Farin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabien, Maurice</creatorcontrib><creatorcontrib>Guzmán, Johnny</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Zytoon, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabien, Maurice</au><au>Guzmán, Johnny</au><au>Neilan, Michael</au><au>Zytoon, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>390</volume><spage>114444</spage><pages>114444-</pages><artnum>114444</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2021.114444</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2022-02, Vol.390, p.114444, Article 114444 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2635269082 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Apexes Approximation Divergence-free Graph theory Low-order Mathematical analysis Polynomials Powell–Sabin Worsey–Farin |
title | Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-order%20divergence-free%20approximations%20for%20the%20Stokes%20problem%20on%20Worsey%E2%80%93Farin%20and%20Powell%E2%80%93Sabin%20splits&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Fabien,%20Maurice&rft.date=2022-02-15&rft.volume=390&rft.spage=114444&rft.pages=114444-&rft.artnum=114444&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2021.114444&rft_dat=%3Cproquest_cross%3E2635269082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635269082&rft_id=info:pmid/&rft_els_id=S0045782521006782&rfr_iscdi=true |