Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits

We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2022-02, Vol.390, p.114444, Article 114444
Hauptverfasser: Fabien, Maurice, Guzmán, Johnny, Neilan, Michael, Zytoon, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114444
container_title Computer methods in applied mechanics and engineering
container_volume 390
creator Fabien, Maurice
Guzmán, Johnny
Neilan, Michael
Zytoon, Ahmed
description We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.
doi_str_mv 10.1016/j.cma.2021.114444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2635269082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782521006782</els_id><sourcerecordid>2635269082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EEqVwAHaWWKd4HCd2xApVvKRKIBXE0nKSCbhN42KnLd1xB27ISXBV1sxmpPnnn8dHyDmwETDIL2ejamFGnHEYAYgYB2QAShYJh1QdkgFjIkuk4tkxOQlhxmIo4AMyn7hN4nyNntZ2jf4NuwqTxiNSs1x692kXpreuC7RxnvbvSKe9m2OgUStbXFDX0VfnA25_vr5vjbcdNV1Nn9wG2zaWpqaMpbBsbR9OyVFj2oBnf3lIXm5vnsf3yeTx7mF8PUmqNFd9UippGBhsUsxKQCnqmgkBMivKjJXGFIUSKo-yEJJDZaRkRSmkYrIRCiSkQ3Kxnxtv_Fhh6PXMrXwXV2qepxnPC6Z47IJ9V-VdCB4bvfTxWb_VwPSOqZ7pyFTvmOo90-i52nswnr-26HWo7I5YbT1Wva6d_cf9C0BsgPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635269082</pqid></control><display><type>article</type><title>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fabien, Maurice ; Guzmán, Johnny ; Neilan, Michael ; Zytoon, Ahmed</creator><creatorcontrib>Fabien, Maurice ; Guzmán, Johnny ; Neilan, Michael ; Zytoon, Ahmed</creatorcontrib><description>We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2021.114444</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Apexes ; Approximation ; Divergence-free ; Graph theory ; Low-order ; Mathematical analysis ; Polynomials ; Powell–Sabin ; Worsey–Farin</subject><ispartof>Computer methods in applied mechanics and engineering, 2022-02, Vol.390, p.114444, Article 114444</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 15, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</citedby><cites>FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2021.114444$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Fabien, Maurice</creatorcontrib><creatorcontrib>Guzmán, Johnny</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Zytoon, Ahmed</creatorcontrib><title>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</title><title>Computer methods in applied mechanics and engineering</title><description>We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.</description><subject>Apexes</subject><subject>Approximation</subject><subject>Divergence-free</subject><subject>Graph theory</subject><subject>Low-order</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Powell–Sabin</subject><subject>Worsey–Farin</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EEqVwAHaWWKd4HCd2xApVvKRKIBXE0nKSCbhN42KnLd1xB27ISXBV1sxmpPnnn8dHyDmwETDIL2ejamFGnHEYAYgYB2QAShYJh1QdkgFjIkuk4tkxOQlhxmIo4AMyn7hN4nyNntZ2jf4NuwqTxiNSs1x692kXpreuC7RxnvbvSKe9m2OgUStbXFDX0VfnA25_vr5vjbcdNV1Nn9wG2zaWpqaMpbBsbR9OyVFj2oBnf3lIXm5vnsf3yeTx7mF8PUmqNFd9UippGBhsUsxKQCnqmgkBMivKjJXGFIUSKo-yEJJDZaRkRSmkYrIRCiSkQ3Kxnxtv_Fhh6PXMrXwXV2qepxnPC6Z47IJ9V-VdCB4bvfTxWb_VwPSOqZ7pyFTvmOo90-i52nswnr-26HWo7I5YbT1Wva6d_cf9C0BsgPU</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Fabien, Maurice</creator><creator>Guzmán, Johnny</creator><creator>Neilan, Michael</creator><creator>Zytoon, Ahmed</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220215</creationdate><title>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</title><author>Fabien, Maurice ; Guzmán, Johnny ; Neilan, Michael ; Zytoon, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b87a01aef3e5b1e74dd0441759b50baa998486ef344721ca7709b47807f481713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apexes</topic><topic>Approximation</topic><topic>Divergence-free</topic><topic>Graph theory</topic><topic>Low-order</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Powell–Sabin</topic><topic>Worsey–Farin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fabien, Maurice</creatorcontrib><creatorcontrib>Guzmán, Johnny</creatorcontrib><creatorcontrib>Neilan, Michael</creatorcontrib><creatorcontrib>Zytoon, Ahmed</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fabien, Maurice</au><au>Guzmán, Johnny</au><au>Neilan, Michael</au><au>Zytoon, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>390</volume><spage>114444</spage><pages>114444-</pages><artnum>114444</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We derive low-order, inf–sup stable and divergence-free finite element approximations for the Stokes problem using Worsey–Farin splits in three dimensions and Powell–Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, whereas the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2021.114444</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2022-02, Vol.390, p.114444, Article 114444
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2635269082
source ScienceDirect Journals (5 years ago - present)
subjects Apexes
Approximation
Divergence-free
Graph theory
Low-order
Mathematical analysis
Polynomials
Powell–Sabin
Worsey–Farin
title Low-order divergence-free approximations for the Stokes problem on Worsey–Farin and Powell–Sabin splits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-order%20divergence-free%20approximations%20for%20the%20Stokes%20problem%20on%20Worsey%E2%80%93Farin%20and%20Powell%E2%80%93Sabin%20splits&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Fabien,%20Maurice&rft.date=2022-02-15&rft.volume=390&rft.spage=114444&rft.pages=114444-&rft.artnum=114444&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2021.114444&rft_dat=%3Cproquest_cross%3E2635269082%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635269082&rft_id=info:pmid/&rft_els_id=S0045782521006782&rfr_iscdi=true