Observation of fractional topological numbers at photonic edges and corners
Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topologi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Liang, Chengpeng Liu, Yang Li, Fei-Fei Leung, Shuwai Yin Poo Jian-Hua, Jiang |
description | Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2635126787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635126787</sourcerecordid><originalsourceid>FETCH-proquest_journals_26351267873</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvsOC5kCb25y6K4MGL95KmSW2p2ZpNfX4j-ACe5mNmGGbFEiFlntUHITYsJRo556KsRFHIhF1vLRn_VmFAB2jBeqW_rCYIOOOE_aAju-XZGk-gAswPDOgGDabrTXRcBxq9i-mOra2ayKQ_3bL9-XQ_XrLZ42sxFJoRFx-nqRGlLPJ4oq7kf60Pb6A92w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635126787</pqid></control><display><type>article</type><title>Observation of fractional topological numbers at photonic edges and corners</title><source>Free E- Journals</source><creator>Liang, Chengpeng ; Liu, Yang ; Li, Fei-Fei ; Leung, Shuwai ; Yin Poo ; Jian-Hua, Jiang</creator><creatorcontrib>Liang, Chengpeng ; Liu, Yang ; Li, Fei-Fei ; Leung, Shuwai ; Yin Poo ; Jian-Hua, Jiang</creatorcontrib><description>Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Corners ; Density of states ; Photonic band gaps ; Photonic crystals ; Quantum numbers ; Topology</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liang, Chengpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Fei-Fei</creatorcontrib><creatorcontrib>Leung, Shuwai</creatorcontrib><creatorcontrib>Yin Poo</creatorcontrib><creatorcontrib>Jian-Hua, Jiang</creatorcontrib><title>Observation of fractional topological numbers at photonic edges and corners</title><title>arXiv.org</title><description>Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.</description><subject>Corners</subject><subject>Density of states</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Quantum numbers</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvsOC5kCb25y6K4MGL95KmSW2p2ZpNfX4j-ACe5mNmGGbFEiFlntUHITYsJRo556KsRFHIhF1vLRn_VmFAB2jBeqW_rCYIOOOE_aAju-XZGk-gAswPDOgGDabrTXRcBxq9i-mOra2ayKQ_3bL9-XQ_XrLZ42sxFJoRFx-nqRGlLPJ4oq7kf60Pb6A92w</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Liang, Chengpeng</creator><creator>Liu, Yang</creator><creator>Li, Fei-Fei</creator><creator>Leung, Shuwai</creator><creator>Yin Poo</creator><creator>Jian-Hua, Jiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221121</creationdate><title>Observation of fractional topological numbers at photonic edges and corners</title><author>Liang, Chengpeng ; Liu, Yang ; Li, Fei-Fei ; Leung, Shuwai ; Yin Poo ; Jian-Hua, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26351267873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Corners</topic><topic>Density of states</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Quantum numbers</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Chengpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Fei-Fei</creatorcontrib><creatorcontrib>Leung, Shuwai</creatorcontrib><creatorcontrib>Yin Poo</creatorcontrib><creatorcontrib>Jian-Hua, Jiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Chengpeng</au><au>Liu, Yang</au><au>Li, Fei-Fei</au><au>Leung, Shuwai</au><au>Yin Poo</au><au>Jian-Hua, Jiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Observation of fractional topological numbers at photonic edges and corners</atitle><jtitle>arXiv.org</jtitle><date>2022-11-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2635126787 |
source | Free E- Journals |
subjects | Corners Density of states Photonic band gaps Photonic crystals Quantum numbers Topology |
title | Observation of fractional topological numbers at photonic edges and corners |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Observation%20of%20fractional%20topological%20numbers%20at%20photonic%20edges%20and%20corners&rft.jtitle=arXiv.org&rft.au=Liang,%20Chengpeng&rft.date=2022-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2635126787%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635126787&rft_id=info:pmid/&rfr_iscdi=true |