Observation of fractional topological numbers at photonic edges and corners

Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topologi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Liang, Chengpeng, Liu, Yang, Li, Fei-Fei, Leung, Shuwai, Yin Poo, Jian-Hua, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liang, Chengpeng
Liu, Yang
Li, Fei-Fei
Leung, Shuwai
Yin Poo
Jian-Hua, Jiang
description Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2635126787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635126787</sourcerecordid><originalsourceid>FETCH-proquest_journals_26351267873</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvsOC5kCb25y6K4MGL95KmSW2p2ZpNfX4j-ACe5mNmGGbFEiFlntUHITYsJRo556KsRFHIhF1vLRn_VmFAB2jBeqW_rCYIOOOE_aAju-XZGk-gAswPDOgGDabrTXRcBxq9i-mOra2ayKQ_3bL9-XQ_XrLZ42sxFJoRFx-nqRGlLPJ4oq7kf60Pb6A92w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635126787</pqid></control><display><type>article</type><title>Observation of fractional topological numbers at photonic edges and corners</title><source>Free E- Journals</source><creator>Liang, Chengpeng ; Liu, Yang ; Li, Fei-Fei ; Leung, Shuwai ; Yin Poo ; Jian-Hua, Jiang</creator><creatorcontrib>Liang, Chengpeng ; Liu, Yang ; Li, Fei-Fei ; Leung, Shuwai ; Yin Poo ; Jian-Hua, Jiang</creatorcontrib><description>Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Corners ; Density of states ; Photonic band gaps ; Photonic crystals ; Quantum numbers ; Topology</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liang, Chengpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Fei-Fei</creatorcontrib><creatorcontrib>Leung, Shuwai</creatorcontrib><creatorcontrib>Yin Poo</creatorcontrib><creatorcontrib>Jian-Hua, Jiang</creatorcontrib><title>Observation of fractional topological numbers at photonic edges and corners</title><title>arXiv.org</title><description>Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.</description><subject>Corners</subject><subject>Density of states</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Quantum numbers</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvsOC5kCb25y6K4MGL95KmSW2p2ZpNfX4j-ACe5mNmGGbFEiFlntUHITYsJRo556KsRFHIhF1vLRn_VmFAB2jBeqW_rCYIOOOE_aAju-XZGk-gAswPDOgGDabrTXRcBxq9i-mOra2ayKQ_3bL9-XQ_XrLZ42sxFJoRFx-nqRGlLPJ4oq7kf60Pb6A92w</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Liang, Chengpeng</creator><creator>Liu, Yang</creator><creator>Li, Fei-Fei</creator><creator>Leung, Shuwai</creator><creator>Yin Poo</creator><creator>Jian-Hua, Jiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221121</creationdate><title>Observation of fractional topological numbers at photonic edges and corners</title><author>Liang, Chengpeng ; Liu, Yang ; Li, Fei-Fei ; Leung, Shuwai ; Yin Poo ; Jian-Hua, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26351267873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Corners</topic><topic>Density of states</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Quantum numbers</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang, Chengpeng</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Fei-Fei</creatorcontrib><creatorcontrib>Leung, Shuwai</creatorcontrib><creatorcontrib>Yin Poo</creatorcontrib><creatorcontrib>Jian-Hua, Jiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Chengpeng</au><au>Liu, Yang</au><au>Li, Fei-Fei</au><au>Leung, Shuwai</au><au>Yin Poo</au><au>Jian-Hua, Jiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Observation of fractional topological numbers at photonic edges and corners</atitle><jtitle>arXiv.org</jtitle><date>2022-11-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Topological phases of matter are featured with exotic edge states. However, the fractional topological numbers at edges, though predicted long ago by Jackiw and Rebbi, remain elusive in topological photonic systems. Here, we report on the observation of fractional topological numbers at the topological edges and corners in one- and two-dimensional photonic crystals. The fractional topological numbers are determined via the measurements of the photonic local density-of-states. In one-dimensional photonic crystals, we witness a rapid change of the fractional topological number at the edges rising from 0 to 1/2 when the photonic band gap experiences a topological transition, confirming the well-known prediction of Jackiw and Rebbi. In two-dimensional systems, we discover that the fractional topological number in the corner region varies from 0 to 1/2 and 1/4 in different photonic band gap phases. Our study paves the way toward topological manipulation of fractional quantum numbers in photonics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2635126787
source Free E- Journals
subjects Corners
Density of states
Photonic band gaps
Photonic crystals
Quantum numbers
Topology
title Observation of fractional topological numbers at photonic edges and corners
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Observation%20of%20fractional%20topological%20numbers%20at%20photonic%20edges%20and%20corners&rft.jtitle=arXiv.org&rft.au=Liang,%20Chengpeng&rft.date=2022-11-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2635126787%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635126787&rft_id=info:pmid/&rfr_iscdi=true