Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load
The increasing electricity demand and the need for clean and renewable energy resources to satisfy this demand in a cost-effective manner, imposes new challenges on researchers and developers to maximize the output of these renewable resources at all times. However, the increasing penetration of ren...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Muhy Eddin Za'ter Sandy Yacoub Miguel Majd Ghazi Batarseh |
description | The increasing electricity demand and the need for clean and renewable energy resources to satisfy this demand in a cost-effective manner, imposes new challenges on researchers and developers to maximize the output of these renewable resources at all times. However, the increasing penetration of renewable energy into the grid imposes new challenges on the grid operators. All of these challenges and issues gave rise to the need of Maximum Power Point Tracker (MPPT) and Flexible Power Point Trackers (FPPT) in order to maximize the power extracted from Photovoltaic (PV) systems and meet the grid operation constraints. Existing solutions for these algorithms do not take into consideration the very high dynamical nature of weather conditions that affects the output power that can be extracted from the PV modules, whereas in practice, the weather changes dynamically faster than what the algorithms time needed to converge. The work in this document is an attempt to address this shortcoming address shortcoming by utilizing online optimization algorithms for this purpose. Numerical analysis and verification are presented in the document. Code for the algorithms can be found at this link |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2635121098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635121098</sourcerecordid><originalsourceid>FETCH-proquest_journals_26351210983</originalsourceid><addsrcrecordid>eNqNitEKgjAYRkcQJOU7DLoWdEuz68q8COrC6FKW_upsbLVNqrdvQg_QzXfgO2eCPEJpFKQrQmbIN6YPw5AkaxLH1ENwkoJLwAfNag7S4h2YamSjNM4EvPlNAD6rF2i33IlCs-rOZYsvsnYnwzlvO_Fx8VDZgdlRXYHZbpSyxkfF6gWaNkwY8H-co2W2L7Z58NDqOYCxZa8GLZ0qSULjiEThJqX_VV_1lUXW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635121098</pqid></control><display><type>article</type><title>Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load</title><source>Free E- Journals</source><creator>Muhy Eddin Za'ter ; Sandy Yacoub Miguel ; Majd Ghazi Batarseh</creator><creatorcontrib>Muhy Eddin Za'ter ; Sandy Yacoub Miguel ; Majd Ghazi Batarseh</creatorcontrib><description>The increasing electricity demand and the need for clean and renewable energy resources to satisfy this demand in a cost-effective manner, imposes new challenges on researchers and developers to maximize the output of these renewable resources at all times. However, the increasing penetration of renewable energy into the grid imposes new challenges on the grid operators. All of these challenges and issues gave rise to the need of Maximum Power Point Tracker (MPPT) and Flexible Power Point Trackers (FPPT) in order to maximize the power extracted from Photovoltaic (PV) systems and meet the grid operation constraints. Existing solutions for these algorithms do not take into consideration the very high dynamical nature of weather conditions that affects the output power that can be extracted from the PV modules, whereas in practice, the weather changes dynamically faster than what the algorithms time needed to converge. The work in this document is an attempt to address this shortcoming address shortcoming by utilizing online optimization algorithms for this purpose. Numerical analysis and verification are presented in the document. Code for the algorithms can be found at this link</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clean energy ; Documents ; Electric power demand ; Energy sources ; Maximum power tracking ; Numerical analysis ; Optimization ; Photovoltaic cells ; Renewable energy ; Renewable resources ; Weather</subject><ispartof>arXiv.org, 2023-01</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Muhy Eddin Za'ter</creatorcontrib><creatorcontrib>Sandy Yacoub Miguel</creatorcontrib><creatorcontrib>Majd Ghazi Batarseh</creatorcontrib><title>Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load</title><title>arXiv.org</title><description>The increasing electricity demand and the need for clean and renewable energy resources to satisfy this demand in a cost-effective manner, imposes new challenges on researchers and developers to maximize the output of these renewable resources at all times. However, the increasing penetration of renewable energy into the grid imposes new challenges on the grid operators. All of these challenges and issues gave rise to the need of Maximum Power Point Tracker (MPPT) and Flexible Power Point Trackers (FPPT) in order to maximize the power extracted from Photovoltaic (PV) systems and meet the grid operation constraints. Existing solutions for these algorithms do not take into consideration the very high dynamical nature of weather conditions that affects the output power that can be extracted from the PV modules, whereas in practice, the weather changes dynamically faster than what the algorithms time needed to converge. The work in this document is an attempt to address this shortcoming address shortcoming by utilizing online optimization algorithms for this purpose. Numerical analysis and verification are presented in the document. Code for the algorithms can be found at this link</description><subject>Algorithms</subject><subject>Clean energy</subject><subject>Documents</subject><subject>Electric power demand</subject><subject>Energy sources</subject><subject>Maximum power tracking</subject><subject>Numerical analysis</subject><subject>Optimization</subject><subject>Photovoltaic cells</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Weather</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNitEKgjAYRkcQJOU7DLoWdEuz68q8COrC6FKW_upsbLVNqrdvQg_QzXfgO2eCPEJpFKQrQmbIN6YPw5AkaxLH1ENwkoJLwAfNag7S4h2YamSjNM4EvPlNAD6rF2i33IlCs-rOZYsvsnYnwzlvO_Fx8VDZgdlRXYHZbpSyxkfF6gWaNkwY8H-co2W2L7Z58NDqOYCxZa8GLZ0qSULjiEThJqX_VV_1lUXW</recordid><startdate>20230103</startdate><enddate>20230103</enddate><creator>Muhy Eddin Za'ter</creator><creator>Sandy Yacoub Miguel</creator><creator>Majd Ghazi Batarseh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230103</creationdate><title>Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load</title><author>Muhy Eddin Za'ter ; Sandy Yacoub Miguel ; Majd Ghazi Batarseh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26351210983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Clean energy</topic><topic>Documents</topic><topic>Electric power demand</topic><topic>Energy sources</topic><topic>Maximum power tracking</topic><topic>Numerical analysis</topic><topic>Optimization</topic><topic>Photovoltaic cells</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Muhy Eddin Za'ter</creatorcontrib><creatorcontrib>Sandy Yacoub Miguel</creatorcontrib><creatorcontrib>Majd Ghazi Batarseh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhy Eddin Za'ter</au><au>Sandy Yacoub Miguel</au><au>Majd Ghazi Batarseh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load</atitle><jtitle>arXiv.org</jtitle><date>2023-01-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The increasing electricity demand and the need for clean and renewable energy resources to satisfy this demand in a cost-effective manner, imposes new challenges on researchers and developers to maximize the output of these renewable resources at all times. However, the increasing penetration of renewable energy into the grid imposes new challenges on the grid operators. All of these challenges and issues gave rise to the need of Maximum Power Point Tracker (MPPT) and Flexible Power Point Trackers (FPPT) in order to maximize the power extracted from Photovoltaic (PV) systems and meet the grid operation constraints. Existing solutions for these algorithms do not take into consideration the very high dynamical nature of weather conditions that affects the output power that can be extracted from the PV modules, whereas in practice, the weather changes dynamically faster than what the algorithms time needed to converge. The work in this document is an attempt to address this shortcoming address shortcoming by utilizing online optimization algorithms for this purpose. Numerical analysis and verification are presented in the document. Code for the algorithms can be found at this link</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2635121098 |
source | Free E- Journals |
subjects | Algorithms Clean energy Documents Electric power demand Energy sources Maximum power tracking Numerical analysis Optimization Photovoltaic cells Renewable energy Renewable resources Weather |
title | Online Gradient Descent for Flexible Power Point Tracking Under a Highly Fluctuating Weather and Load |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Online%20Gradient%20Descent%20for%20Flexible%20Power%20Point%20Tracking%20Under%20a%20Highly%20Fluctuating%20Weather%20and%20Load&rft.jtitle=arXiv.org&rft.au=Muhy%20Eddin%20Za'ter&rft.date=2023-01-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2635121098%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635121098&rft_id=info:pmid/&rfr_iscdi=true |