On generalized second-order proto-differentiability of the Benson proper perturbation maps in parametric vector optimization problems
This paper is concerned with second-order sensitivity analysis of parameterized vector optimization problems via generalized second-order contingent derivative. We prove that the Benson proper efficient solution map and the Benson proper efficient perturbation map of a parametric vector optimization...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-04, Vol.26 (2), Article 27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with second-order sensitivity analysis of parameterized vector optimization problems via generalized second-order contingent derivative. We prove that the Benson proper efficient solution map and the Benson proper efficient perturbation map of a parametric vector optimization problem are generalized second-order proto-differentiable under some suitable qualification conditions. Several examples are given to illustrate the obtained results. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-022-00899-w |