Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis

Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2022-03, Vol.30 (3), p.638-648
Hauptverfasser: Bustince, Humberto, Bedregal, Benjamin, Campion, Maria Jesus, da Silva, Ivanosca, Fernandez, Javier, Indurain, Esteban, Raventos-Pujol, Armajac, Santiago, Regivan H. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 3
container_start_page 638
container_title IEEE transactions on fuzzy systems
container_volume 30
creator Bustince, Humberto
Bedregal, Benjamin
Campion, Maria Jesus
da Silva, Ivanosca
Fernandez, Javier
Indurain, Esteban
Raventos-Pujol, Armajac
Santiago, Regivan H. N.
description Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.
doi_str_mv 10.1109/TFUZZ.2020.3042611
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635048776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9288714</ieee_id><sourcerecordid>2635048776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKf_gF4Cnju__GiaeBvDqjAYyHbZwZC1aZfZtTNphf33tm54-r7D8768PAjdE5gQAuppma7W6wkFChMGnApCLtCIKE4iAMYv-x8Ei0QC4hrdhLADIDwmcoQ-p2XpbWla19S4KfB7nbsfl3emwh-m_nJ1GfBy65uu3OK0CwOVdnU24OEZz7xrXebCHps6x4tD6_amcu0RT2tTHYMLt-iqMFWwd-c7Rqv0ZTl7i-aL1_fZdB5ljKk2EiAosI0EkmdJTHnMMivjYpOIWEKPcBCGmoKonG4YozlYVgCVyrBYFZlUbIweT70H33x3NrR613S-HxE0FSwGLpNE9BQ9UZlvQvC20AffL_ZHTUAPHvWfRz141GePfejhFHLW2v-AolImhLNfzHJuwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635048776</pqid></control><display><type>article</type><title>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Bustince, Humberto ; Bedregal, Benjamin ; Campion, Maria Jesus ; da Silva, Ivanosca ; Fernandez, Javier ; Indurain, Esteban ; Raventos-Pujol, Armajac ; Santiago, Regivan H. N.</creator><creatorcontrib>Bustince, Humberto ; Bedregal, Benjamin ; Campion, Maria Jesus ; da Silva, Ivanosca ; Fernandez, Javier ; Indurain, Esteban ; Raventos-Pujol, Armajac ; Santiago, Regivan H. N.</creatorcontrib><description>Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.3042611</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Aggregates ; Aggregation ; Axioms ; Decision making ; general means ; Indexes ; Mathematics ; Organizations ; Proposals ; Ranking ; ranking optimality ; Ratings &amp; rankings ; score functions ; Smart cities ; social choice</subject><ispartof>IEEE transactions on fuzzy systems, 2022-03, Vol.30 (3), p.638-648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</citedby><cites>FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</cites><orcidid>0000-0003-4427-3935 ; 0000-0001-5277-142X ; 0000-0002-6757-7934 ; 0000-0001-6139-1832 ; 0000-0002-1511-5658 ; 0000-0002-1279-6195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9288714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9288714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bustince, Humberto</creatorcontrib><creatorcontrib>Bedregal, Benjamin</creatorcontrib><creatorcontrib>Campion, Maria Jesus</creatorcontrib><creatorcontrib>da Silva, Ivanosca</creatorcontrib><creatorcontrib>Fernandez, Javier</creatorcontrib><creatorcontrib>Indurain, Esteban</creatorcontrib><creatorcontrib>Raventos-Pujol, Armajac</creatorcontrib><creatorcontrib>Santiago, Regivan H. N.</creatorcontrib><title>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Aggregation</subject><subject>Axioms</subject><subject>Decision making</subject><subject>general means</subject><subject>Indexes</subject><subject>Mathematics</subject><subject>Organizations</subject><subject>Proposals</subject><subject>Ranking</subject><subject>ranking optimality</subject><subject>Ratings &amp; rankings</subject><subject>score functions</subject><subject>Smart cities</subject><subject>social choice</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKf_gF4Cnju__GiaeBvDqjAYyHbZwZC1aZfZtTNphf33tm54-r7D8768PAjdE5gQAuppma7W6wkFChMGnApCLtCIKE4iAMYv-x8Ei0QC4hrdhLADIDwmcoQ-p2XpbWla19S4KfB7nbsfl3emwh-m_nJ1GfBy65uu3OK0CwOVdnU24OEZz7xrXebCHps6x4tD6_amcu0RT2tTHYMLt-iqMFWwd-c7Rqv0ZTl7i-aL1_fZdB5ljKk2EiAosI0EkmdJTHnMMivjYpOIWEKPcBCGmoKonG4YozlYVgCVyrBYFZlUbIweT70H33x3NrR613S-HxE0FSwGLpNE9BQ9UZlvQvC20AffL_ZHTUAPHvWfRz141GePfejhFHLW2v-AolImhLNfzHJuwA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bustince, Humberto</creator><creator>Bedregal, Benjamin</creator><creator>Campion, Maria Jesus</creator><creator>da Silva, Ivanosca</creator><creator>Fernandez, Javier</creator><creator>Indurain, Esteban</creator><creator>Raventos-Pujol, Armajac</creator><creator>Santiago, Regivan H. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4427-3935</orcidid><orcidid>https://orcid.org/0000-0001-5277-142X</orcidid><orcidid>https://orcid.org/0000-0002-6757-7934</orcidid><orcidid>https://orcid.org/0000-0001-6139-1832</orcidid><orcidid>https://orcid.org/0000-0002-1511-5658</orcidid><orcidid>https://orcid.org/0000-0002-1279-6195</orcidid></search><sort><creationdate>20220301</creationdate><title>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</title><author>Bustince, Humberto ; Bedregal, Benjamin ; Campion, Maria Jesus ; da Silva, Ivanosca ; Fernandez, Javier ; Indurain, Esteban ; Raventos-Pujol, Armajac ; Santiago, Regivan H. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Aggregation</topic><topic>Axioms</topic><topic>Decision making</topic><topic>general means</topic><topic>Indexes</topic><topic>Mathematics</topic><topic>Organizations</topic><topic>Proposals</topic><topic>Ranking</topic><topic>ranking optimality</topic><topic>Ratings &amp; rankings</topic><topic>score functions</topic><topic>Smart cities</topic><topic>social choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustince, Humberto</creatorcontrib><creatorcontrib>Bedregal, Benjamin</creatorcontrib><creatorcontrib>Campion, Maria Jesus</creatorcontrib><creatorcontrib>da Silva, Ivanosca</creatorcontrib><creatorcontrib>Fernandez, Javier</creatorcontrib><creatorcontrib>Indurain, Esteban</creatorcontrib><creatorcontrib>Raventos-Pujol, Armajac</creatorcontrib><creatorcontrib>Santiago, Regivan H. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bustince, Humberto</au><au>Bedregal, Benjamin</au><au>Campion, Maria Jesus</au><au>da Silva, Ivanosca</au><au>Fernandez, Javier</au><au>Indurain, Esteban</au><au>Raventos-Pujol, Armajac</au><au>Santiago, Regivan H. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>30</volume><issue>3</issue><spage>638</spage><epage>648</epage><pages>638-648</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.3042611</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4427-3935</orcidid><orcidid>https://orcid.org/0000-0001-5277-142X</orcidid><orcidid>https://orcid.org/0000-0002-6757-7934</orcidid><orcidid>https://orcid.org/0000-0001-6139-1832</orcidid><orcidid>https://orcid.org/0000-0002-1511-5658</orcidid><orcidid>https://orcid.org/0000-0002-1279-6195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2022-03, Vol.30 (3), p.638-648
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2635048776
source IEEE Electronic Library (IEL)
subjects Agglomeration
Aggregates
Aggregation
Axioms
Decision making
general means
Indexes
Mathematics
Organizations
Proposals
Ranking
ranking optimality
Ratings & rankings
score functions
Smart cities
social choice
title Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregation%20of%20Individual%20Rankings%20Through%20Fusion%20Functions:%20Criticism%20and%20Optimality%20Analysis&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Bustince,%20Humberto&rft.date=2022-03-01&rft.volume=30&rft.issue=3&rft.spage=638&rft.epage=648&rft.pages=638-648&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.3042611&rft_dat=%3Cproquest_RIE%3E2635048776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635048776&rft_id=info:pmid/&rft_ieee_id=9288714&rfr_iscdi=true