Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis
Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2022-03, Vol.30 (3), p.638-648 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | 3 |
container_start_page | 638 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 30 |
creator | Bustince, Humberto Bedregal, Benjamin Campion, Maria Jesus da Silva, Ivanosca Fernandez, Javier Indurain, Esteban Raventos-Pujol, Armajac Santiago, Regivan H. N. |
description | Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings. |
doi_str_mv | 10.1109/TFUZZ.2020.3042611 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635048776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9288714</ieee_id><sourcerecordid>2635048776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKf_gF4Cnju__GiaeBvDqjAYyHbZwZC1aZfZtTNphf33tm54-r7D8768PAjdE5gQAuppma7W6wkFChMGnApCLtCIKE4iAMYv-x8Ei0QC4hrdhLADIDwmcoQ-p2XpbWla19S4KfB7nbsfl3emwh-m_nJ1GfBy65uu3OK0CwOVdnU24OEZz7xrXebCHps6x4tD6_amcu0RT2tTHYMLt-iqMFWwd-c7Rqv0ZTl7i-aL1_fZdB5ljKk2EiAosI0EkmdJTHnMMivjYpOIWEKPcBCGmoKonG4YozlYVgCVyrBYFZlUbIweT70H33x3NrR613S-HxE0FSwGLpNE9BQ9UZlvQvC20AffL_ZHTUAPHvWfRz141GePfejhFHLW2v-AolImhLNfzHJuwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635048776</pqid></control><display><type>article</type><title>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Bustince, Humberto ; Bedregal, Benjamin ; Campion, Maria Jesus ; da Silva, Ivanosca ; Fernandez, Javier ; Indurain, Esteban ; Raventos-Pujol, Armajac ; Santiago, Regivan H. N.</creator><creatorcontrib>Bustince, Humberto ; Bedregal, Benjamin ; Campion, Maria Jesus ; da Silva, Ivanosca ; Fernandez, Javier ; Indurain, Esteban ; Raventos-Pujol, Armajac ; Santiago, Regivan H. N.</creatorcontrib><description>Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.3042611</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agglomeration ; Aggregates ; Aggregation ; Axioms ; Decision making ; general means ; Indexes ; Mathematics ; Organizations ; Proposals ; Ranking ; ranking optimality ; Ratings & rankings ; score functions ; Smart cities ; social choice</subject><ispartof>IEEE transactions on fuzzy systems, 2022-03, Vol.30 (3), p.638-648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</citedby><cites>FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</cites><orcidid>0000-0003-4427-3935 ; 0000-0001-5277-142X ; 0000-0002-6757-7934 ; 0000-0001-6139-1832 ; 0000-0002-1511-5658 ; 0000-0002-1279-6195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9288714$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9288714$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bustince, Humberto</creatorcontrib><creatorcontrib>Bedregal, Benjamin</creatorcontrib><creatorcontrib>Campion, Maria Jesus</creatorcontrib><creatorcontrib>da Silva, Ivanosca</creatorcontrib><creatorcontrib>Fernandez, Javier</creatorcontrib><creatorcontrib>Indurain, Esteban</creatorcontrib><creatorcontrib>Raventos-Pujol, Armajac</creatorcontrib><creatorcontrib>Santiago, Regivan H. N.</creatorcontrib><title>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Aggregation</subject><subject>Axioms</subject><subject>Decision making</subject><subject>general means</subject><subject>Indexes</subject><subject>Mathematics</subject><subject>Organizations</subject><subject>Proposals</subject><subject>Ranking</subject><subject>ranking optimality</subject><subject>Ratings & rankings</subject><subject>score functions</subject><subject>Smart cities</subject><subject>social choice</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKf_gF4Cnju__GiaeBvDqjAYyHbZwZC1aZfZtTNphf33tm54-r7D8768PAjdE5gQAuppma7W6wkFChMGnApCLtCIKE4iAMYv-x8Ei0QC4hrdhLADIDwmcoQ-p2XpbWla19S4KfB7nbsfl3emwh-m_nJ1GfBy65uu3OK0CwOVdnU24OEZz7xrXebCHps6x4tD6_amcu0RT2tTHYMLt-iqMFWwd-c7Rqv0ZTl7i-aL1_fZdB5ljKk2EiAosI0EkmdJTHnMMivjYpOIWEKPcBCGmoKonG4YozlYVgCVyrBYFZlUbIweT70H33x3NrR613S-HxE0FSwGLpNE9BQ9UZlvQvC20AffL_ZHTUAPHvWfRz141GePfejhFHLW2v-AolImhLNfzHJuwA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Bustince, Humberto</creator><creator>Bedregal, Benjamin</creator><creator>Campion, Maria Jesus</creator><creator>da Silva, Ivanosca</creator><creator>Fernandez, Javier</creator><creator>Indurain, Esteban</creator><creator>Raventos-Pujol, Armajac</creator><creator>Santiago, Regivan H. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4427-3935</orcidid><orcidid>https://orcid.org/0000-0001-5277-142X</orcidid><orcidid>https://orcid.org/0000-0002-6757-7934</orcidid><orcidid>https://orcid.org/0000-0001-6139-1832</orcidid><orcidid>https://orcid.org/0000-0002-1511-5658</orcidid><orcidid>https://orcid.org/0000-0002-1279-6195</orcidid></search><sort><creationdate>20220301</creationdate><title>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</title><author>Bustince, Humberto ; Bedregal, Benjamin ; Campion, Maria Jesus ; da Silva, Ivanosca ; Fernandez, Javier ; Indurain, Esteban ; Raventos-Pujol, Armajac ; Santiago, Regivan H. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-606203b801dc752453ce85fb76580c33406a2af19d2b332d0e3f0289a359fc893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Aggregation</topic><topic>Axioms</topic><topic>Decision making</topic><topic>general means</topic><topic>Indexes</topic><topic>Mathematics</topic><topic>Organizations</topic><topic>Proposals</topic><topic>Ranking</topic><topic>ranking optimality</topic><topic>Ratings & rankings</topic><topic>score functions</topic><topic>Smart cities</topic><topic>social choice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustince, Humberto</creatorcontrib><creatorcontrib>Bedregal, Benjamin</creatorcontrib><creatorcontrib>Campion, Maria Jesus</creatorcontrib><creatorcontrib>da Silva, Ivanosca</creatorcontrib><creatorcontrib>Fernandez, Javier</creatorcontrib><creatorcontrib>Indurain, Esteban</creatorcontrib><creatorcontrib>Raventos-Pujol, Armajac</creatorcontrib><creatorcontrib>Santiago, Regivan H. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bustince, Humberto</au><au>Bedregal, Benjamin</au><au>Campion, Maria Jesus</au><au>da Silva, Ivanosca</au><au>Fernandez, Javier</au><au>Indurain, Esteban</au><au>Raventos-Pujol, Armajac</au><au>Santiago, Regivan H. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>30</volume><issue>3</issue><spage>638</spage><epage>648</epage><pages>638-648</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Throughout this article, our main idea is to analyze from a theoretical and normative point of view different methods to aggregate individual rankings. To do so, first, we introduce the concept of a general mean on an abstract set. This new concept conciliates the social choice-where well-known impossibility results as the Arrovian ones are encountered-and the decision-making approaches-where the necessity of fusing rankings is unavoidable. Moreover, it gives rise to a reasonable definition of the concept of a ranking fusion function that does indeed satisfy the axioms of a general mean. Then, we will introduce some methods to build ranking fusion functions, paying a special attention to the use of score functions, and pointing out the equivalence between ranking and scoring. To conclude, we prove that any ranking fusion function introduces a partial order on rankings implemented on a finite set of alternatives. Therefore, this allows us to compare rankings and different methods of aggregation, so that in practice, one should look for the maximal elements with respect to such orders defined on rankings.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.3042611</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4427-3935</orcidid><orcidid>https://orcid.org/0000-0001-5277-142X</orcidid><orcidid>https://orcid.org/0000-0002-6757-7934</orcidid><orcidid>https://orcid.org/0000-0001-6139-1832</orcidid><orcidid>https://orcid.org/0000-0002-1511-5658</orcidid><orcidid>https://orcid.org/0000-0002-1279-6195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2022-03, Vol.30 (3), p.638-648 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_2635048776 |
source | IEEE Electronic Library (IEL) |
subjects | Agglomeration Aggregates Aggregation Axioms Decision making general means Indexes Mathematics Organizations Proposals Ranking ranking optimality Ratings & rankings score functions Smart cities social choice |
title | Aggregation of Individual Rankings Through Fusion Functions: Criticism and Optimality Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregation%20of%20Individual%20Rankings%20Through%20Fusion%20Functions:%20Criticism%20and%20Optimality%20Analysis&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Bustince,%20Humberto&rft.date=2022-03-01&rft.volume=30&rft.issue=3&rft.spage=638&rft.epage=648&rft.pages=638-648&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.3042611&rft_dat=%3Cproquest_RIE%3E2635048776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635048776&rft_id=info:pmid/&rft_ieee_id=9288714&rfr_iscdi=true |