Efficient Through-Wall Human Pose Reconstruction Using UWB MIMO Radar
In this letter, we introduce ultrawideband (UWB) Pose, a through-wall human pose reconstruction framework using UWB multiple-input--multiple-output (MIMO) radar. Previous radio frequency-based works have achieved two-dimensional (2-D) and 3-D human pose reconstruction in human detection of occlusion...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2022-03, Vol.21 (3), p.571-575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 3 |
container_start_page | 571 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 21 |
creator | Song, Yongkun Jin, Tian Dai, Yongpeng Zhou, Xiaolong |
description | In this letter, we introduce ultrawideband (UWB) Pose, a through-wall human pose reconstruction framework using UWB multiple-input--multiple-output (MIMO) radar. Previous radio frequency-based works have achieved two-dimensional (2-D) and 3-D human pose reconstruction in human detection of occlusion scenes. However, these methods are difficult to adapt to the environment and often suffer from high computational complexity. To address this issue, we first construct 3-D radar images of human targets using UWB MIMO radar system, and transform those radar images into discrete 3-D point data. Then, design a lightweight deep learning network to extract human body features from the input point data, finally convert the features into 3-D pose coordinates. The comparative experimental results show that the human pose reconstruction error of our UWB-Pose framework can be as low as 38.84 mm. Importantly, the number of parameters and floating point operations are further reduced to 1.02 M and 2.75 G, to meet the needs in practical deployments and the scope of applicability. |
doi_str_mv | 10.1109/LAWP.2021.3138512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635045789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9664385</ieee_id><sourcerecordid>2635045789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-21542385c73edad923eff0144233615f78be0a40bf7b9fbf5285073e4892bf963</originalsourceid><addsrcrecordid>eNo9kE9rAjEQxUNpodb2A5ReAj2vzZ9NsjlasVVQFFE8huxuoivrxia7h377ZlF6mmHmvZnHD4BXjEYYI_mxGO_XI4IIHlFMM4bJHRhglmYJE0zc9z3lCSaEPYKnEE4IYcEZHYDp1NqqqEzTwu3Ru-5wTPa6ruGsO-sGrl0wcGMK14TWd0VbuQbuQtUc4G7_CZfz5QpudKn9M3iwug7m5VaHYPc13U5myWL1PZ-MF0lBJG0TEhORmK4Q1JS6lIQaaxFO45ByzKzIcoN0inIrcmlzy0jGUNSmmSS5lZwOwfv17sW7n86EVp1c55v4UhFOGUqZyGRU4auq8C4Eb6y6-Oqs_a_CSPW0VE9L9bTUjVb0vF09lTHmXy85T-Oe_gFss2O1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635045789</pqid></control><display><type>article</type><title>Efficient Through-Wall Human Pose Reconstruction Using UWB MIMO Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Yongkun ; Jin, Tian ; Dai, Yongpeng ; Zhou, Xiaolong</creator><creatorcontrib>Song, Yongkun ; Jin, Tian ; Dai, Yongpeng ; Zhou, Xiaolong</creatorcontrib><description>In this letter, we introduce ultrawideband (UWB) Pose, a through-wall human pose reconstruction framework using UWB multiple-input--multiple-output (MIMO) radar. Previous radio frequency-based works have achieved two-dimensional (2-D) and 3-D human pose reconstruction in human detection of occlusion scenes. However, these methods are difficult to adapt to the environment and often suffer from high computational complexity. To address this issue, we first construct 3-D radar images of human targets using UWB MIMO radar system, and transform those radar images into discrete 3-D point data. Then, design a lightweight deep learning network to extract human body features from the input point data, finally convert the features into 3-D pose coordinates. The comparative experimental results show that the human pose reconstruction error of our UWB-Pose framework can be as low as 38.84 mm. Importantly, the number of parameters and floating point operations are further reduced to 1.02 M and 2.75 G, to meet the needs in practical deployments and the scope of applicability.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2021.3138512</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna arrays ; Deep learning ; Feature extraction ; Floating point arithmetic ; human pose reconstruction ; Image reconstruction ; Occlusion ; Radar ; Radar antennas ; Radar equipment ; Radar imaging ; Three-dimensional displays ; through-wall ; Transmitting antennas ; ultrawideband (UWB) radar ; Ultrawideband radar</subject><ispartof>IEEE antennas and wireless propagation letters, 2022-03, Vol.21 (3), p.571-575</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-21542385c73edad923eff0144233615f78be0a40bf7b9fbf5285073e4892bf963</citedby><cites>FETCH-LOGICAL-c293t-21542385c73edad923eff0144233615f78be0a40bf7b9fbf5285073e4892bf963</cites><orcidid>0000-0001-7592-2315 ; 0000-0002-0734-9833 ; 0000-0002-4142-6265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9664385$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9664385$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Yongkun</creatorcontrib><creatorcontrib>Jin, Tian</creatorcontrib><creatorcontrib>Dai, Yongpeng</creatorcontrib><creatorcontrib>Zhou, Xiaolong</creatorcontrib><title>Efficient Through-Wall Human Pose Reconstruction Using UWB MIMO Radar</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In this letter, we introduce ultrawideband (UWB) Pose, a through-wall human pose reconstruction framework using UWB multiple-input--multiple-output (MIMO) radar. Previous radio frequency-based works have achieved two-dimensional (2-D) and 3-D human pose reconstruction in human detection of occlusion scenes. However, these methods are difficult to adapt to the environment and often suffer from high computational complexity. To address this issue, we first construct 3-D radar images of human targets using UWB MIMO radar system, and transform those radar images into discrete 3-D point data. Then, design a lightweight deep learning network to extract human body features from the input point data, finally convert the features into 3-D pose coordinates. The comparative experimental results show that the human pose reconstruction error of our UWB-Pose framework can be as low as 38.84 mm. Importantly, the number of parameters and floating point operations are further reduced to 1.02 M and 2.75 G, to meet the needs in practical deployments and the scope of applicability.</description><subject>Antenna arrays</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Floating point arithmetic</subject><subject>human pose reconstruction</subject><subject>Image reconstruction</subject><subject>Occlusion</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar equipment</subject><subject>Radar imaging</subject><subject>Three-dimensional displays</subject><subject>through-wall</subject><subject>Transmitting antennas</subject><subject>ultrawideband (UWB) radar</subject><subject>Ultrawideband radar</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9rAjEQxUNpodb2A5ReAj2vzZ9NsjlasVVQFFE8huxuoivrxia7h377ZlF6mmHmvZnHD4BXjEYYI_mxGO_XI4IIHlFMM4bJHRhglmYJE0zc9z3lCSaEPYKnEE4IYcEZHYDp1NqqqEzTwu3Ru-5wTPa6ruGsO-sGrl0wcGMK14TWd0VbuQbuQtUc4G7_CZfz5QpudKn9M3iwug7m5VaHYPc13U5myWL1PZ-MF0lBJG0TEhORmK4Q1JS6lIQaaxFO45ByzKzIcoN0inIrcmlzy0jGUNSmmSS5lZwOwfv17sW7n86EVp1c55v4UhFOGUqZyGRU4auq8C4Eb6y6-Oqs_a_CSPW0VE9L9bTUjVb0vF09lTHmXy85T-Oe_gFss2O1</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Song, Yongkun</creator><creator>Jin, Tian</creator><creator>Dai, Yongpeng</creator><creator>Zhou, Xiaolong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7592-2315</orcidid><orcidid>https://orcid.org/0000-0002-0734-9833</orcidid><orcidid>https://orcid.org/0000-0002-4142-6265</orcidid></search><sort><creationdate>20220301</creationdate><title>Efficient Through-Wall Human Pose Reconstruction Using UWB MIMO Radar</title><author>Song, Yongkun ; Jin, Tian ; Dai, Yongpeng ; Zhou, Xiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-21542385c73edad923eff0144233615f78be0a40bf7b9fbf5285073e4892bf963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna arrays</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Floating point arithmetic</topic><topic>human pose reconstruction</topic><topic>Image reconstruction</topic><topic>Occlusion</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar equipment</topic><topic>Radar imaging</topic><topic>Three-dimensional displays</topic><topic>through-wall</topic><topic>Transmitting antennas</topic><topic>ultrawideband (UWB) radar</topic><topic>Ultrawideband radar</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Yongkun</creatorcontrib><creatorcontrib>Jin, Tian</creatorcontrib><creatorcontrib>Dai, Yongpeng</creatorcontrib><creatorcontrib>Zhou, Xiaolong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Yongkun</au><au>Jin, Tian</au><au>Dai, Yongpeng</au><au>Zhou, Xiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Through-Wall Human Pose Reconstruction Using UWB MIMO Radar</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>21</volume><issue>3</issue><spage>571</spage><epage>575</epage><pages>571-575</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In this letter, we introduce ultrawideband (UWB) Pose, a through-wall human pose reconstruction framework using UWB multiple-input--multiple-output (MIMO) radar. Previous radio frequency-based works have achieved two-dimensional (2-D) and 3-D human pose reconstruction in human detection of occlusion scenes. However, these methods are difficult to adapt to the environment and often suffer from high computational complexity. To address this issue, we first construct 3-D radar images of human targets using UWB MIMO radar system, and transform those radar images into discrete 3-D point data. Then, design a lightweight deep learning network to extract human body features from the input point data, finally convert the features into 3-D pose coordinates. The comparative experimental results show that the human pose reconstruction error of our UWB-Pose framework can be as low as 38.84 mm. Importantly, the number of parameters and floating point operations are further reduced to 1.02 M and 2.75 G, to meet the needs in practical deployments and the scope of applicability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2021.3138512</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7592-2315</orcidid><orcidid>https://orcid.org/0000-0002-0734-9833</orcidid><orcidid>https://orcid.org/0000-0002-4142-6265</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2022-03, Vol.21 (3), p.571-575 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_proquest_journals_2635045789 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna arrays Deep learning Feature extraction Floating point arithmetic human pose reconstruction Image reconstruction Occlusion Radar Radar antennas Radar equipment Radar imaging Three-dimensional displays through-wall Transmitting antennas ultrawideband (UWB) radar Ultrawideband radar |
title | Efficient Through-Wall Human Pose Reconstruction Using UWB MIMO Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Through-Wall%20Human%20Pose%20Reconstruction%20Using%20UWB%20MIMO%20Radar&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Song,%20Yongkun&rft.date=2022-03-01&rft.volume=21&rft.issue=3&rft.spage=571&rft.epage=575&rft.pages=571-575&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2021.3138512&rft_dat=%3Cproquest_RIE%3E2635045789%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635045789&rft_id=info:pmid/&rft_ieee_id=9664385&rfr_iscdi=true |