Reliability Analysis of Multiperformance Multistate System Considering Performance Conversion Process

A large variety of real engineering systems operate with multiple performance measures that are multistate in nature. These systems are usually modeled as multiperformance multistate systems (MPMSSs). However, existing MPMSS models fail to consider an important aspect, i.e., the performance conversi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2022-03, Vol.71 (1), p.2-15
Hauptverfasser: Ding, Yi, Hu, Yishuang, Lin, Yu, Zeng, Zhiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 2
container_title IEEE transactions on reliability
container_volume 71
creator Ding, Yi
Hu, Yishuang
Lin, Yu
Zeng, Zhiguo
description A large variety of real engineering systems operate with multiple performance measures that are multistate in nature. These systems are usually modeled as multiperformance multistate systems (MPMSSs). However, existing MPMSS models fail to consider an important aspect, i.e., the performance conversion process. For example, in a combined heat and power (CHP) generating unit, apart from the output heat and electricity, decision-makers are also interested in the unit's capacity to convert gas into electricity and heat. The latter is related to the performance conversion process. This article proposes a framework for the reliability evaluation of performance conversion-based MPMSS. In the proposed MPMSS model, the couplings among different types of performances inside the components are quantified into the multistate performance conversion matrix. The performance conversion structure functions are proposed to derive system performance conversion capability based on the conversion capabilities of the components. Two reliability evaluation methods considering the steady-state performance conversion process and the continuous-time performance conversion process are proposed, respectively. Numerical examples are given to demonstrate the developed methods.
doi_str_mv 10.1109/TR.2021.3061175
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2635044278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9386218</ieee_id><sourcerecordid>2635044278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-f1b4fcd4355a63529261496ef8322efd157c0b02777a8e92c2b52fcd18de2ae03</originalsourceid><addsrcrecordid>eNpNkMFLwzAUxoMoOKdnD14Knjx0y0vSNj2OoU6YOOY8h7R71YyumUk36H9vRsfw9Hgfv-97j4-Qe6AjAJqPV8sRowxGnKYAWXJBBpAkMoaMwSUZUAoyzhOWX5Mb7zdhFSKXA4JLrI0uTG3aLpo0uu688ZGtovd93Zodusq6rW5K7AXf6hajz863uI2mtvFmjc4039HiHxn0AzpvbBMtnC3R-1tyVena491pDsnXy_NqOovnH69v08k8LjnjbVxBIapyLXiS6JSHZ1kKIk-xkpwxrNaQZCUtKMuyTEvMWcmKhAUDyDUyjZQPyVOf-6NrtXNmq12nrDZqNpmro0a5SAXN5AEC-9izO2d_9-hbtbF7FxrwioXjVAiWyUCNe6p01nuH1TkWqDr2rlZLdexdnXoPjofeYRDxTOdcpgwk_wNOYn8C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635044278</pqid></control><display><type>article</type><title>Reliability Analysis of Multiperformance Multistate System Considering Performance Conversion Process</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Yi ; Hu, Yishuang ; Lin, Yu ; Zeng, Zhiguo</creator><creatorcontrib>Ding, Yi ; Hu, Yishuang ; Lin, Yu ; Zeng, Zhiguo</creatorcontrib><description>A large variety of real engineering systems operate with multiple performance measures that are multistate in nature. These systems are usually modeled as multiperformance multistate systems (MPMSSs). However, existing MPMSS models fail to consider an important aspect, i.e., the performance conversion process. For example, in a combined heat and power (CHP) generating unit, apart from the output heat and electricity, decision-makers are also interested in the unit's capacity to convert gas into electricity and heat. The latter is related to the performance conversion process. This article proposes a framework for the reliability evaluation of performance conversion-based MPMSS. In the proposed MPMSS model, the couplings among different types of performances inside the components are quantified into the multistate performance conversion matrix. The performance conversion structure functions are proposed to derive system performance conversion capability based on the conversion capabilities of the components. Two reliability evaluation methods considering the steady-state performance conversion process and the continuous-time performance conversion process are proposed, respectively. Numerical examples are given to demonstrate the developed methods.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2021.3061175</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cogeneration ; Component reliability ; Conversion ; Couplings ; Decision making ; Degradation ; Electricity ; Engineering Sciences ; Multiperformance multistate system (MPMSSs) ; multistate system ; performance conversion process ; Performance evaluation ; Reliability ; Reliability analysis ; Reliability engineering ; Resistance heating ; Steady-state ; System performance ; universal generating function (UGF)</subject><ispartof>IEEE transactions on reliability, 2022-03, Vol.71 (1), p.2-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-f1b4fcd4355a63529261496ef8322efd157c0b02777a8e92c2b52fcd18de2ae03</citedby><cites>FETCH-LOGICAL-c323t-f1b4fcd4355a63529261496ef8322efd157c0b02777a8e92c2b52fcd18de2ae03</cites><orcidid>0000-0003-4937-4380 ; 0000-0003-4389-5636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9386218$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9386218$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-03464078$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yi</creatorcontrib><creatorcontrib>Hu, Yishuang</creatorcontrib><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Zeng, Zhiguo</creatorcontrib><title>Reliability Analysis of Multiperformance Multistate System Considering Performance Conversion Process</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>A large variety of real engineering systems operate with multiple performance measures that are multistate in nature. These systems are usually modeled as multiperformance multistate systems (MPMSSs). However, existing MPMSS models fail to consider an important aspect, i.e., the performance conversion process. For example, in a combined heat and power (CHP) generating unit, apart from the output heat and electricity, decision-makers are also interested in the unit's capacity to convert gas into electricity and heat. The latter is related to the performance conversion process. This article proposes a framework for the reliability evaluation of performance conversion-based MPMSS. In the proposed MPMSS model, the couplings among different types of performances inside the components are quantified into the multistate performance conversion matrix. The performance conversion structure functions are proposed to derive system performance conversion capability based on the conversion capabilities of the components. Two reliability evaluation methods considering the steady-state performance conversion process and the continuous-time performance conversion process are proposed, respectively. Numerical examples are given to demonstrate the developed methods.</description><subject>Cogeneration</subject><subject>Component reliability</subject><subject>Conversion</subject><subject>Couplings</subject><subject>Decision making</subject><subject>Degradation</subject><subject>Electricity</subject><subject>Engineering Sciences</subject><subject>Multiperformance multistate system (MPMSSs)</subject><subject>multistate system</subject><subject>performance conversion process</subject><subject>Performance evaluation</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Resistance heating</subject><subject>Steady-state</subject><subject>System performance</subject><subject>universal generating function (UGF)</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUxoMoOKdnD14Knjx0y0vSNj2OoU6YOOY8h7R71YyumUk36H9vRsfw9Hgfv-97j4-Qe6AjAJqPV8sRowxGnKYAWXJBBpAkMoaMwSUZUAoyzhOWX5Mb7zdhFSKXA4JLrI0uTG3aLpo0uu688ZGtovd93Zodusq6rW5K7AXf6hajz863uI2mtvFmjc4039HiHxn0AzpvbBMtnC3R-1tyVena491pDsnXy_NqOovnH69v08k8LjnjbVxBIapyLXiS6JSHZ1kKIk-xkpwxrNaQZCUtKMuyTEvMWcmKhAUDyDUyjZQPyVOf-6NrtXNmq12nrDZqNpmro0a5SAXN5AEC-9izO2d_9-hbtbF7FxrwioXjVAiWyUCNe6p01nuH1TkWqDr2rlZLdexdnXoPjofeYRDxTOdcpgwk_wNOYn8C</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ding, Yi</creator><creator>Hu, Yishuang</creator><creator>Lin, Yu</creator><creator>Zeng, Zhiguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4937-4380</orcidid><orcidid>https://orcid.org/0000-0003-4389-5636</orcidid></search><sort><creationdate>20220301</creationdate><title>Reliability Analysis of Multiperformance Multistate System Considering Performance Conversion Process</title><author>Ding, Yi ; Hu, Yishuang ; Lin, Yu ; Zeng, Zhiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-f1b4fcd4355a63529261496ef8322efd157c0b02777a8e92c2b52fcd18de2ae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cogeneration</topic><topic>Component reliability</topic><topic>Conversion</topic><topic>Couplings</topic><topic>Decision making</topic><topic>Degradation</topic><topic>Electricity</topic><topic>Engineering Sciences</topic><topic>Multiperformance multistate system (MPMSSs)</topic><topic>multistate system</topic><topic>performance conversion process</topic><topic>Performance evaluation</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Resistance heating</topic><topic>Steady-state</topic><topic>System performance</topic><topic>universal generating function (UGF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yi</creatorcontrib><creatorcontrib>Hu, Yishuang</creatorcontrib><creatorcontrib>Lin, Yu</creatorcontrib><creatorcontrib>Zeng, Zhiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Yi</au><au>Hu, Yishuang</au><au>Lin, Yu</au><au>Zeng, Zhiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability Analysis of Multiperformance Multistate System Considering Performance Conversion Process</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>71</volume><issue>1</issue><spage>2</spage><epage>15</epage><pages>2-15</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>A large variety of real engineering systems operate with multiple performance measures that are multistate in nature. These systems are usually modeled as multiperformance multistate systems (MPMSSs). However, existing MPMSS models fail to consider an important aspect, i.e., the performance conversion process. For example, in a combined heat and power (CHP) generating unit, apart from the output heat and electricity, decision-makers are also interested in the unit's capacity to convert gas into electricity and heat. The latter is related to the performance conversion process. This article proposes a framework for the reliability evaluation of performance conversion-based MPMSS. In the proposed MPMSS model, the couplings among different types of performances inside the components are quantified into the multistate performance conversion matrix. The performance conversion structure functions are proposed to derive system performance conversion capability based on the conversion capabilities of the components. Two reliability evaluation methods considering the steady-state performance conversion process and the continuous-time performance conversion process are proposed, respectively. Numerical examples are given to demonstrate the developed methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2021.3061175</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4937-4380</orcidid><orcidid>https://orcid.org/0000-0003-4389-5636</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2022-03, Vol.71 (1), p.2-15
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_journals_2635044278
source IEEE Electronic Library (IEL)
subjects Cogeneration
Component reliability
Conversion
Couplings
Decision making
Degradation
Electricity
Engineering Sciences
Multiperformance multistate system (MPMSSs)
multistate system
performance conversion process
Performance evaluation
Reliability
Reliability analysis
Reliability engineering
Resistance heating
Steady-state
System performance
universal generating function (UGF)
title Reliability Analysis of Multiperformance Multistate System Considering Performance Conversion Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T20%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20Analysis%20of%20Multiperformance%20Multistate%20System%20Considering%20Performance%20Conversion%20Process&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Ding,%20Yi&rft.date=2022-03-01&rft.volume=71&rft.issue=1&rft.spage=2&rft.epage=15&rft.pages=2-15&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2021.3061175&rft_dat=%3Cproquest_RIE%3E2635044278%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2635044278&rft_id=info:pmid/&rft_ieee_id=9386218&rfr_iscdi=true