Novel invariants for almost geodesic mappings of the third type
Two kinds of invariance for geometrical objects under transformations are involved in this paper. Based on these kinds, we obtained new invariants for almost geodesic mappings of the third type of a non-symmetric affine connection space in this paper. Our results are presented in two sections. In th...
Gespeichert in:
Veröffentlicht in: | Mathematical notes (Miskolci Egyetem (Hungary)) 2021, Vol.22 (2), p.961-975 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 975 |
---|---|
container_issue | 2 |
container_start_page | 961 |
container_title | Mathematical notes (Miskolci Egyetem (Hungary)) |
container_volume | 22 |
creator | Simjanovic, Dusan J Vesic, Nenad O |
description | Two kinds of invariance for geometrical objects under transformations are involved in this paper. Based on these kinds, we obtained new invariants for almost geodesic mappings of the third type of a non-symmetric affine connection space in this paper. Our results are presented in two sections. In the Section 3, we obtained the invariants for the equitorsion almost geodesic mappings which do not have the property of reciprocity. |
doi_str_mv | 10.18514/MMN.2021.3482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634924531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634924531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-781abd038991a7da3d7a35240a0c6c14c3178c435b6a5e5403a7fac0766698df3</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpoSHNtWdBz3Ylrx72qZTQFyTppT2LjSynDo7lSk4g_75KU7qw7B6GmeEj5JaznJeSi_vlcpUXrOA5iLK4IBOuS50VgsPl_8_kNZnFuGVppFBaVBPysPIH19G2P2BosR8jbXyg2O18HOnG-drF1tIdDkPbbyL1DR2_XNo21HQ8Du6GXDXYRTf7u1Py-fz0MX_NFu8vb_PHRWaB6THTJcd1zaCsKo66Rqg1gkyVkFllubCQOloBcq1QOikYoG7QMq2Uqsq6gSm5O_sOwX_vXRzN1u9DnyJNoUBUhZDAkyo_q2zwMQbXmCG0OwxHw5n55WQSJ3PiZE6c4Ae8PFli</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634924531</pqid></control><display><type>article</type><title>Novel invariants for almost geodesic mappings of the third type</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Simjanovic, Dusan J ; Vesic, Nenad O</creator><creatorcontrib>Simjanovic, Dusan J ; Vesic, Nenad O</creatorcontrib><description>Two kinds of invariance for geometrical objects under transformations are involved in this paper. Based on these kinds, we obtained new invariants for almost geodesic mappings of the third type of a non-symmetric affine connection space in this paper. Our results are presented in two sections. In the Section 3, we obtained the invariants for the equitorsion almost geodesic mappings which do not have the property of reciprocity.</description><identifier>ISSN: 1787-2405</identifier><identifier>EISSN: 1787-2413</identifier><identifier>DOI: 10.18514/MMN.2021.3482</identifier><language>eng</language><publisher>Miskolc: University of Miskolc</publisher><subject>Differential geometry ; Invariants ; Reciprocity</subject><ispartof>Mathematical notes (Miskolci Egyetem (Hungary)), 2021, Vol.22 (2), p.961-975</ispartof><rights>Copyright University of Miskolc 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-781abd038991a7da3d7a35240a0c6c14c3178c435b6a5e5403a7fac0766698df3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Simjanovic, Dusan J</creatorcontrib><creatorcontrib>Vesic, Nenad O</creatorcontrib><title>Novel invariants for almost geodesic mappings of the third type</title><title>Mathematical notes (Miskolci Egyetem (Hungary))</title><description>Two kinds of invariance for geometrical objects under transformations are involved in this paper. Based on these kinds, we obtained new invariants for almost geodesic mappings of the third type of a non-symmetric affine connection space in this paper. Our results are presented in two sections. In the Section 3, we obtained the invariants for the equitorsion almost geodesic mappings which do not have the property of reciprocity.</description><subject>Differential geometry</subject><subject>Invariants</subject><subject>Reciprocity</subject><issn>1787-2405</issn><issn>1787-2413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kEtrwzAQhEVpoSHNtWdBz3Ylrx72qZTQFyTppT2LjSynDo7lSk4g_75KU7qw7B6GmeEj5JaznJeSi_vlcpUXrOA5iLK4IBOuS50VgsPl_8_kNZnFuGVppFBaVBPysPIH19G2P2BosR8jbXyg2O18HOnG-drF1tIdDkPbbyL1DR2_XNo21HQ8Du6GXDXYRTf7u1Py-fz0MX_NFu8vb_PHRWaB6THTJcd1zaCsKo66Rqg1gkyVkFllubCQOloBcq1QOikYoG7QMq2Uqsq6gSm5O_sOwX_vXRzN1u9DnyJNoUBUhZDAkyo_q2zwMQbXmCG0OwxHw5n55WQSJ3PiZE6c4Ae8PFli</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Simjanovic, Dusan J</creator><creator>Vesic, Nenad O</creator><general>University of Miskolc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Novel invariants for almost geodesic mappings of the third type</title><author>Simjanovic, Dusan J ; Vesic, Nenad O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-781abd038991a7da3d7a35240a0c6c14c3178c435b6a5e5403a7fac0766698df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Differential geometry</topic><topic>Invariants</topic><topic>Reciprocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simjanovic, Dusan J</creatorcontrib><creatorcontrib>Vesic, Nenad O</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simjanovic, Dusan J</au><au>Vesic, Nenad O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel invariants for almost geodesic mappings of the third type</atitle><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle><date>2021</date><risdate>2021</risdate><volume>22</volume><issue>2</issue><spage>961</spage><epage>975</epage><pages>961-975</pages><issn>1787-2405</issn><eissn>1787-2413</eissn><abstract>Two kinds of invariance for geometrical objects under transformations are involved in this paper. Based on these kinds, we obtained new invariants for almost geodesic mappings of the third type of a non-symmetric affine connection space in this paper. Our results are presented in two sections. In the Section 3, we obtained the invariants for the equitorsion almost geodesic mappings which do not have the property of reciprocity.</abstract><cop>Miskolc</cop><pub>University of Miskolc</pub><doi>10.18514/MMN.2021.3482</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1787-2405 |
ispartof | Mathematical notes (Miskolci Egyetem (Hungary)), 2021, Vol.22 (2), p.961-975 |
issn | 1787-2405 1787-2413 |
language | eng |
recordid | cdi_proquest_journals_2634924531 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Differential geometry Invariants Reciprocity |
title | Novel invariants for almost geodesic mappings of the third type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20invariants%20for%20almost%20geodesic%20mappings%20of%20the%20third%20type&rft.jtitle=Mathematical%20notes%20(Miskolci%20Egyetem%20(Hungary))&rft.au=Simjanovic,%20Dusan%20J&rft.date=2021&rft.volume=22&rft.issue=2&rft.spage=961&rft.epage=975&rft.pages=961-975&rft.issn=1787-2405&rft.eissn=1787-2413&rft_id=info:doi/10.18514/MMN.2021.3482&rft_dat=%3Cproquest_cross%3E2634924531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634924531&rft_id=info:pmid/&rfr_iscdi=true |