Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches

In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.278-288
Hauptverfasser: SAKAMOTO, Kosei, MINEMATSU, Kazuhiko, SHIBATA, Nao, SHIGERI, Maki, KUBO, Hiroyasu, ISOBE, Takanori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 288
container_issue 3
container_start_page 278
container_title IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
container_volume E105.A
creator SAKAMOTO, Kosei
MINEMATSU, Kazuhiko
SHIBATA, Nao
SHIGERI, Maki
KUBO, Hiroyasu
ISOBE, Takanori
description In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.
doi_str_mv 10.1587/transfun.2021CIP0009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634884731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634884731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-652006edacc17168f72312e6e58cd6dee5e08feaa7f33229cb47adb3fd4ae4cf3</originalsourceid><addsrcrecordid>eNpNkF9PwjAUxRujiYh-Ax-a-Dzsn63rHgEBSRY1Bp-b0t2ywdxmO0Lw0zuDIE_35uT8zr05CN1TMqCRjB9bpytvt9WAEUbH8zdCSHKBejQOo4ByHl-iHkmoCGRE5DW68X5NCJWMhj2UP4EvVhWuLdY4LSrQDqd6Dw7b2nXSqKzNBo-LJu-kkfaQ4brCi30DAcMzqMDpsvju1CkUvoUSv0C7q90G74o2x5zhUfebycHfoiurSw93f7OPPqaTxfg5SF9n8_EwDQwXSRuIiBEiINPG0JgKaWPGKQMBkTSZyAAiINKC1rHlnLHELMNYZ0tus1BDaCzvo4dDbuPqry34Vq3rrau6k4oJHkoZxpx2rvDgMq723oFVjSs-tdsrStRvp-rYqTrrtMPeD9jat3oFJ0i7tjAl_EMTSiI1VPy4nIWczCbXTkHFfwDS_Ik_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634884731</pqid></control><display><type>article</type><title>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</title><source>J-STAGE Free</source><creator>SAKAMOTO, Kosei ; MINEMATSU, Kazuhiko ; SHIBATA, Nao ; SHIGERI, Maki ; KUBO, Hiroyasu ; ISOBE, Takanori</creator><creatorcontrib>SAKAMOTO, Kosei ; MINEMATSU, Kazuhiko ; SHIBATA, Nao ; SHIGERI, Maki ; KUBO, Hiroyasu ; ISOBE, Takanori</creatorcontrib><description>In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2021CIP0009</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Boxes ; Diffusion ; Encryption ; MILP ; permutation ; Permutations ; Type-2 Generalized Feistel Network</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.278-288</ispartof><rights>2022 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-652006edacc17168f72312e6e58cd6dee5e08feaa7f33229cb47adb3fd4ae4cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>SAKAMOTO, Kosei</creatorcontrib><creatorcontrib>MINEMATSU, Kazuhiko</creatorcontrib><creatorcontrib>SHIBATA, Nao</creatorcontrib><creatorcontrib>SHIGERI, Maki</creatorcontrib><creatorcontrib>KUBO, Hiroyasu</creatorcontrib><creatorcontrib>ISOBE, Takanori</creatorcontrib><title>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.</description><subject>Algorithms</subject><subject>Boxes</subject><subject>Diffusion</subject><subject>Encryption</subject><subject>MILP</subject><subject>permutation</subject><subject>Permutations</subject><subject>Type-2 Generalized Feistel Network</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF9PwjAUxRujiYh-Ax-a-Dzsn63rHgEBSRY1Bp-b0t2ywdxmO0Lw0zuDIE_35uT8zr05CN1TMqCRjB9bpytvt9WAEUbH8zdCSHKBejQOo4ByHl-iHkmoCGRE5DW68X5NCJWMhj2UP4EvVhWuLdY4LSrQDqd6Dw7b2nXSqKzNBo-LJu-kkfaQ4brCi30DAcMzqMDpsvju1CkUvoUSv0C7q90G74o2x5zhUfebycHfoiurSw93f7OPPqaTxfg5SF9n8_EwDQwXSRuIiBEiINPG0JgKaWPGKQMBkTSZyAAiINKC1rHlnLHELMNYZ0tus1BDaCzvo4dDbuPqry34Vq3rrau6k4oJHkoZxpx2rvDgMq723oFVjSs-tdsrStRvp-rYqTrrtMPeD9jat3oFJ0i7tjAl_EMTSiI1VPy4nIWczCbXTkHFfwDS_Ik_</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>SAKAMOTO, Kosei</creator><creator>MINEMATSU, Kazuhiko</creator><creator>SHIBATA, Nao</creator><creator>SHIGERI, Maki</creator><creator>KUBO, Hiroyasu</creator><creator>ISOBE, Takanori</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220301</creationdate><title>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</title><author>SAKAMOTO, Kosei ; MINEMATSU, Kazuhiko ; SHIBATA, Nao ; SHIGERI, Maki ; KUBO, Hiroyasu ; ISOBE, Takanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-652006edacc17168f72312e6e58cd6dee5e08feaa7f33229cb47adb3fd4ae4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boxes</topic><topic>Diffusion</topic><topic>Encryption</topic><topic>MILP</topic><topic>permutation</topic><topic>Permutations</topic><topic>Type-2 Generalized Feistel Network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAKAMOTO, Kosei</creatorcontrib><creatorcontrib>MINEMATSU, Kazuhiko</creatorcontrib><creatorcontrib>SHIBATA, Nao</creatorcontrib><creatorcontrib>SHIGERI, Maki</creatorcontrib><creatorcontrib>KUBO, Hiroyasu</creatorcontrib><creatorcontrib>ISOBE, Takanori</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAKAMOTO, Kosei</au><au>MINEMATSU, Kazuhiko</au><au>SHIBATA, Nao</au><au>SHIGERI, Maki</au><au>KUBO, Hiroyasu</au><au>ISOBE, Takanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>E105.A</volume><issue>3</issue><spage>278</spage><epage>288</epage><pages>278-288</pages><artnum>2021CIP0009</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2021CIP0009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8508
ispartof IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.278-288
issn 0916-8508
1745-1337
language eng
recordid cdi_proquest_journals_2634884731
source J-STAGE Free
subjects Algorithms
Boxes
Diffusion
Encryption
MILP
permutation
Permutations
Type-2 Generalized Feistel Network
title Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Linear%20Layer%20for%20a%20Block%20Cipher%20Based%20on%20Type-2%20Generalized%20Feistel%20Network%20with%2032%20Branches&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=SAKAMOTO,%20Kosei&rft.date=2022-03-01&rft.volume=E105.A&rft.issue=3&rft.spage=278&rft.epage=288&rft.pages=278-288&rft.artnum=2021CIP0009&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2021CIP0009&rft_dat=%3Cproquest_cross%3E2634884731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634884731&rft_id=info:pmid/&rfr_iscdi=true