Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches
In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.278-288 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 3 |
container_start_page | 278 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E105.A |
creator | SAKAMOTO, Kosei MINEMATSU, Kazuhiko SHIBATA, Nao SHIGERI, Maki KUBO, Hiroyasu ISOBE, Takanori |
description | In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class. |
doi_str_mv | 10.1587/transfun.2021CIP0009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634884731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634884731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-652006edacc17168f72312e6e58cd6dee5e08feaa7f33229cb47adb3fd4ae4cf3</originalsourceid><addsrcrecordid>eNpNkF9PwjAUxRujiYh-Ax-a-Dzsn63rHgEBSRY1Bp-b0t2ywdxmO0Lw0zuDIE_35uT8zr05CN1TMqCRjB9bpytvt9WAEUbH8zdCSHKBejQOo4ByHl-iHkmoCGRE5DW68X5NCJWMhj2UP4EvVhWuLdY4LSrQDqd6Dw7b2nXSqKzNBo-LJu-kkfaQ4brCi30DAcMzqMDpsvju1CkUvoUSv0C7q90G74o2x5zhUfebycHfoiurSw93f7OPPqaTxfg5SF9n8_EwDQwXSRuIiBEiINPG0JgKaWPGKQMBkTSZyAAiINKC1rHlnLHELMNYZ0tus1BDaCzvo4dDbuPqry34Vq3rrau6k4oJHkoZxpx2rvDgMq723oFVjSs-tdsrStRvp-rYqTrrtMPeD9jat3oFJ0i7tjAl_EMTSiI1VPy4nIWczCbXTkHFfwDS_Ik_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634884731</pqid></control><display><type>article</type><title>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</title><source>J-STAGE Free</source><creator>SAKAMOTO, Kosei ; MINEMATSU, Kazuhiko ; SHIBATA, Nao ; SHIGERI, Maki ; KUBO, Hiroyasu ; ISOBE, Takanori</creator><creatorcontrib>SAKAMOTO, Kosei ; MINEMATSU, Kazuhiko ; SHIBATA, Nao ; SHIGERI, Maki ; KUBO, Hiroyasu ; ISOBE, Takanori</creatorcontrib><description>In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2021CIP0009</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Algorithms ; Boxes ; Diffusion ; Encryption ; MILP ; permutation ; Permutations ; Type-2 Generalized Feistel Network</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.278-288</ispartof><rights>2022 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-652006edacc17168f72312e6e58cd6dee5e08feaa7f33229cb47adb3fd4ae4cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>SAKAMOTO, Kosei</creatorcontrib><creatorcontrib>MINEMATSU, Kazuhiko</creatorcontrib><creatorcontrib>SHIBATA, Nao</creatorcontrib><creatorcontrib>SHIGERI, Maki</creatorcontrib><creatorcontrib>KUBO, Hiroyasu</creatorcontrib><creatorcontrib>ISOBE, Takanori</creatorcontrib><title>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.</description><subject>Algorithms</subject><subject>Boxes</subject><subject>Diffusion</subject><subject>Encryption</subject><subject>MILP</subject><subject>permutation</subject><subject>Permutations</subject><subject>Type-2 Generalized Feistel Network</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkF9PwjAUxRujiYh-Ax-a-Dzsn63rHgEBSRY1Bp-b0t2ywdxmO0Lw0zuDIE_35uT8zr05CN1TMqCRjB9bpytvt9WAEUbH8zdCSHKBejQOo4ByHl-iHkmoCGRE5DW68X5NCJWMhj2UP4EvVhWuLdY4LSrQDqd6Dw7b2nXSqKzNBo-LJu-kkfaQ4brCi30DAcMzqMDpsvju1CkUvoUSv0C7q90G74o2x5zhUfebycHfoiurSw93f7OPPqaTxfg5SF9n8_EwDQwXSRuIiBEiINPG0JgKaWPGKQMBkTSZyAAiINKC1rHlnLHELMNYZ0tus1BDaCzvo4dDbuPqry34Vq3rrau6k4oJHkoZxpx2rvDgMq723oFVjSs-tdsrStRvp-rYqTrrtMPeD9jat3oFJ0i7tjAl_EMTSiI1VPy4nIWczCbXTkHFfwDS_Ik_</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>SAKAMOTO, Kosei</creator><creator>MINEMATSU, Kazuhiko</creator><creator>SHIBATA, Nao</creator><creator>SHIGERI, Maki</creator><creator>KUBO, Hiroyasu</creator><creator>ISOBE, Takanori</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220301</creationdate><title>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</title><author>SAKAMOTO, Kosei ; MINEMATSU, Kazuhiko ; SHIBATA, Nao ; SHIGERI, Maki ; KUBO, Hiroyasu ; ISOBE, Takanori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-652006edacc17168f72312e6e58cd6dee5e08feaa7f33229cb47adb3fd4ae4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boxes</topic><topic>Diffusion</topic><topic>Encryption</topic><topic>MILP</topic><topic>permutation</topic><topic>Permutations</topic><topic>Type-2 Generalized Feistel Network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SAKAMOTO, Kosei</creatorcontrib><creatorcontrib>MINEMATSU, Kazuhiko</creatorcontrib><creatorcontrib>SHIBATA, Nao</creatorcontrib><creatorcontrib>SHIGERI, Maki</creatorcontrib><creatorcontrib>KUBO, Hiroyasu</creatorcontrib><creatorcontrib>ISOBE, Takanori</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAKAMOTO, Kosei</au><au>MINEMATSU, Kazuhiko</au><au>SHIBATA, Nao</au><au>SHIGERI, Maki</au><au>KUBO, Hiroyasu</au><au>ISOBE, Takanori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>E105.A</volume><issue>3</issue><spage>278</spage><epage>288</epage><pages>278-288</pages><artnum>2021CIP0009</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>In spite of the research for a linear layer of Type-2 Generalized Feistel Network (Type-2 GFN) over more than 10 years, finding a good 32-branch permutation for Type-2 GFN is still a very hard task due to a huge search space. In terms of the diffusion property, Suzaki and Minematsu investigated the required number of rounds to achieve the full diffusion when the branch number is up to 16. After that, Derbez et al. presented a class of 32-branch permutations that achieves the 9-round full diffusion and they prove that this is optimal. However, this class is not suitable to be used in Type-2 GFN because it requires a large number of rounds to ensure a sufficient number of active S-boxes. In this paper, we present how to find a good class of 32-branch permutations for Type-2 GFN. To achieve this goal, we convert Type-2 GFN into a LBlock-like structure, and then we evaluate the diffusion property and the resistance against major attacks, such as differential, linear, impossible differential and integral attacks by an MILP. As a result, we present a good class of 32-branch permutations that achieves the 10-round full diffusion, ensures differentially/linearly active S-boxes of 66 at 19 round, and has the 18/20-round impossible differential/integral distinguisher, respectively. The 32-branch permutation used in WARP was chosen among this class.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2021CIP0009</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022/03/01, Vol.E105.A(3), pp.278-288 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_2634884731 |
source | J-STAGE Free |
subjects | Algorithms Boxes Diffusion Encryption MILP permutation Permutations Type-2 Generalized Feistel Network |
title | Design of a Linear Layer for a Block Cipher Based on Type-2 Generalized Feistel Network with 32 Branches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Linear%20Layer%20for%20a%20Block%20Cipher%20Based%20on%20Type-2%20Generalized%20Feistel%20Network%20with%2032%20Branches&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=SAKAMOTO,%20Kosei&rft.date=2022-03-01&rft.volume=E105.A&rft.issue=3&rft.spage=278&rft.epage=288&rft.pages=278-288&rft.artnum=2021CIP0009&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2021CIP0009&rft_dat=%3Cproquest_cross%3E2634884731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634884731&rft_id=info:pmid/&rfr_iscdi=true |