Identification and in silico Analysis of Nonsense SNPs of Human Colorectal Cancer Protein

Colorectal cancer (CRC) is the third most prevalent disease in the world, with an estimated 1.2 million new cases each year. Spontaneous CRCs account for around 70% of all CRCs, are caused by somatic mutations. Minor variations or single-nucleotide polymorphisms (SNPs) in oncogene or tumor-suppresso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Oleo Science 2022, Vol.71(3), pp.363-370
Hauptverfasser: Wang, Lu, Tu, Huiyang, Zeng, Lingzhi, Gao, Ruichen, Luo, Sumei, Xiong, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Colorectal cancer (CRC) is the third most prevalent disease in the world, with an estimated 1.2 million new cases each year. Spontaneous CRCs account for around 70% of all CRCs, are caused by somatic mutations. Minor variations or single-nucleotide polymorphisms (SNPs) in oncogene or tumor-suppressor genes cause familial CRC. MSH2 and MSH6 genes are located on chromosome 2. These genes products are involved in the repair of DNA replication defects. If these proteins are changed, the replication errors are not rectified, resulting in damaged DNA leading to colorectal cancer. We employed a variety of computational methodologies to find nsSNPs that are harmful to the structure and function of the MSH6 protein and could be causing CRC in our study. SIFT, PROVEAN, Poly- Phen-2, PhD-SNP, and SNPs&GO were among the in silico methods used to do the computational research. According to the findings, mutations of G932Q, E1234Q, and F1104Q are important alterations in native MSH6 protein rs35717727 that may contribute to its dysfunction and, ultimately, disease. The study also provided three-dimensional structures of the native MSH6 protein and mutations. These nsSNPs should be considered as key target mutations in many disorders involving MSH6 dysfunction in future studies. This is the first thorough study to use in silico technologies to assess MSH6 gene variants, and it will be extremely useful in planning largescale investigations and developing precision medicines to treat disorders caused by these polymorphisms. Additionally, animal models of various autoimmune disorders with these mutations could aid in determining their precise involvement.
ISSN:1345-8957
1347-3352
DOI:10.5650/jos.ess21313