COMPLEMENT METHOD OF MISSING OBSERVATION FLOW DATA BY MEANS OF DEEP LEARNING METHOD

Streamflow data are important for river maintenance, water resources planning, and flood forecasting. However, the flow data may be missing due to various reasons. Therefore, this study proposed a novel method using deep learning to complement missing data of flow discharge time series. This study u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doboku Gakkai Ronbunshu. B1, Suikogaku = Journal of Japan Society of Civil Engineers. Ser. B1, Hydraulic Engineering Ser. B1 (Hydraulic Engineering), 2021, Vol.77(2), pp.I_1243-I_1248
Hauptverfasser: NAGASATO, Takeyoshi, ISHIDA, Kei, YOKOO, Kazuki, SAKAGUCHI, Daiju, KIYAMA, Masato, AMAGASAKI, Motoki
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!