Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences
This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used...
Gespeichert in:
Veröffentlicht in: | Automatic control and computer sciences 2021-12, Vol.55 (8), p.941-948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 948 |
---|---|
container_issue | 8 |
container_start_page | 941 |
container_title | Automatic control and computer sciences |
container_volume | 55 |
creator | Antonov, R. A. Karachanskaya, E. V. Khandozhko, G. V. |
description | This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed. |
doi_str_mv | 10.3103/S0146411621080046 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634863732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634863732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82omyWZ3j6VULRQV2oK3Jc0mbWrd1CSL9N-btYIH8TS8-d6bYQahayC3DAi7mxPgggMICqQkhIsTNIA8L7MkX0_RoMdZz8_RRQhbQhIrxQCtl8G2azzy0RqrrNzhJ9357xI_nX8LODo8CdG-y6hx3Gj84t1KruzOxgN2Bk9b43yC1rV4rlXn-_5i47WM-Fkl7XWrdLhEZ0bugr76qUO0vJ8sxo_Z7PlhOh7NMsVAxIwKXjFoBOe0yaUsFK8ME7wBAYkQKHRFCkEMY7CqCm4Yp5IR1eSUloYozobo5jh3791Hp0Ost67zbVpZU8F4KVjBaHLB0aW8C8FrU-99utAfaiB1_8_6zz9Thh4zIXnbtfa_k_8PfQFmD3ZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634863732</pqid></control><display><type>article</type><title>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</title><source>Springer Nature - Complete Springer Journals</source><creator>Antonov, R. A. ; Karachanskaya, E. V. ; Khandozhko, G. V.</creator><creatorcontrib>Antonov, R. A. ; Karachanskaya, E. V. ; Khandozhko, G. V.</creatorcontrib><description>This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411621080046</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Computer Science ; Control Structures and Microprogramming ; Neural networks ; Security ; Security management</subject><ispartof>Automatic control and computer sciences, 2021-12, Vol.55 (8), p.941-948</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 8, pp. 941–948. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2020, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</citedby><cites>FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411621080046$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411621080046$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Antonov, R. A.</creatorcontrib><creatorcontrib>Karachanskaya, E. V.</creatorcontrib><creatorcontrib>Khandozhko, G. V.</creatorcontrib><title>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Neural networks</subject><subject>Security</subject><subject>Security management</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82omyWZ3j6VULRQV2oK3Jc0mbWrd1CSL9N-btYIH8TS8-d6bYQahayC3DAi7mxPgggMICqQkhIsTNIA8L7MkX0_RoMdZz8_RRQhbQhIrxQCtl8G2azzy0RqrrNzhJ9357xI_nX8LODo8CdG-y6hx3Gj84t1KruzOxgN2Bk9b43yC1rV4rlXn-_5i47WM-Fkl7XWrdLhEZ0bugr76qUO0vJ8sxo_Z7PlhOh7NMsVAxIwKXjFoBOe0yaUsFK8ME7wBAYkQKHRFCkEMY7CqCm4Yp5IR1eSUloYozobo5jh3791Hp0Ost67zbVpZU8F4KVjBaHLB0aW8C8FrU-99utAfaiB1_8_6zz9Thh4zIXnbtfa_k_8PfQFmD3ZY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Antonov, R. A.</creator><creator>Karachanskaya, E. V.</creator><creator>Khandozhko, G. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</title><author>Antonov, R. A. ; Karachanskaya, E. V. ; Khandozhko, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Neural networks</topic><topic>Security</topic><topic>Security management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonov, R. A.</creatorcontrib><creatorcontrib>Karachanskaya, E. V.</creatorcontrib><creatorcontrib>Khandozhko, G. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, R. A.</au><au>Karachanskaya, E. V.</au><au>Khandozhko, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>55</volume><issue>8</issue><spage>941</spage><epage>948</epage><pages>941-948</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411621080046</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2021-12, Vol.55 (8), p.941-948 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_2634863732 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial neural networks Computer Science Control Structures and Microprogramming Neural networks Security Security management |
title | Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Artificial%20Neural%20Networks%20to%20Estimate%20the%20Probability%20of%20Information%20Security%20Threat%20Occurrences&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Antonov,%20R.%20A.&rft.date=2021-12-01&rft.volume=55&rft.issue=8&rft.spage=941&rft.epage=948&rft.pages=941-948&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411621080046&rft_dat=%3Cproquest_cross%3E2634863732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634863732&rft_id=info:pmid/&rfr_iscdi=true |