Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences

This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2021-12, Vol.55 (8), p.941-948
Hauptverfasser: Antonov, R. A., Karachanskaya, E. V., Khandozhko, G. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 948
container_issue 8
container_start_page 941
container_title Automatic control and computer sciences
container_volume 55
creator Antonov, R. A.
Karachanskaya, E. V.
Khandozhko, G. V.
description This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.
doi_str_mv 10.3103/S0146411621080046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634863732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634863732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA82omyWZ3j6VULRQV2oK3Jc0mbWrd1CSL9N-btYIH8TS8-d6bYQahayC3DAi7mxPgggMICqQkhIsTNIA8L7MkX0_RoMdZz8_RRQhbQhIrxQCtl8G2azzy0RqrrNzhJ9357xI_nX8LODo8CdG-y6hx3Gj84t1KruzOxgN2Bk9b43yC1rV4rlXn-_5i47WM-Fkl7XWrdLhEZ0bugr76qUO0vJ8sxo_Z7PlhOh7NMsVAxIwKXjFoBOe0yaUsFK8ME7wBAYkQKHRFCkEMY7CqCm4Yp5IR1eSUloYozobo5jh3791Hp0Ost67zbVpZU8F4KVjBaHLB0aW8C8FrU-99utAfaiB1_8_6zz9Thh4zIXnbtfa_k_8PfQFmD3ZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634863732</pqid></control><display><type>article</type><title>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</title><source>Springer Nature - Complete Springer Journals</source><creator>Antonov, R. A. ; Karachanskaya, E. V. ; Khandozhko, G. V.</creator><creatorcontrib>Antonov, R. A. ; Karachanskaya, E. V. ; Khandozhko, G. V.</creatorcontrib><description>This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411621080046</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Computer Science ; Control Structures and Microprogramming ; Neural networks ; Security ; Security management</subject><ispartof>Automatic control and computer sciences, 2021-12, Vol.55 (8), p.941-948</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 8, pp. 941–948. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2020, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</citedby><cites>FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411621080046$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411621080046$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Antonov, R. A.</creatorcontrib><creatorcontrib>Karachanskaya, E. V.</creatorcontrib><creatorcontrib>Khandozhko, G. V.</creatorcontrib><title>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Neural networks</subject><subject>Security</subject><subject>Security management</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA82omyWZ3j6VULRQV2oK3Jc0mbWrd1CSL9N-btYIH8TS8-d6bYQahayC3DAi7mxPgggMICqQkhIsTNIA8L7MkX0_RoMdZz8_RRQhbQhIrxQCtl8G2azzy0RqrrNzhJ9357xI_nX8LODo8CdG-y6hx3Gj84t1KruzOxgN2Bk9b43yC1rV4rlXn-_5i47WM-Fkl7XWrdLhEZ0bugr76qUO0vJ8sxo_Z7PlhOh7NMsVAxIwKXjFoBOe0yaUsFK8ME7wBAYkQKHRFCkEMY7CqCm4Yp5IR1eSUloYozobo5jh3791Hp0Ost67zbVpZU8F4KVjBaHLB0aW8C8FrU-99utAfaiB1_8_6zz9Thh4zIXnbtfa_k_8PfQFmD3ZY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Antonov, R. A.</creator><creator>Karachanskaya, E. V.</creator><creator>Khandozhko, G. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</title><author>Antonov, R. A. ; Karachanskaya, E. V. ; Khandozhko, G. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-264931d6442d5aa7c49f364d161649017e90760f331b974f342a30cd5228f0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Neural networks</topic><topic>Security</topic><topic>Security management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antonov, R. A.</creatorcontrib><creatorcontrib>Karachanskaya, E. V.</creatorcontrib><creatorcontrib>Khandozhko, G. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antonov, R. A.</au><au>Karachanskaya, E. V.</au><au>Khandozhko, G. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>55</volume><issue>8</issue><spage>941</spage><epage>948</epage><pages>941-948</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>This article defines the possibility of using artificial neural networks for evaluating the probability of information safety threat occurrences and the development of a computer program. The result of analyzing the threat occurrence probability has shown that artificial neural networks can be used to evaluate the probability of information security threat occurrence. An application for evaluating the threat occurrence probability is developed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411621080046</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2021-12, Vol.55 (8), p.941-948
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2634863732
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Computer Science
Control Structures and Microprogramming
Neural networks
Security
Security management
title Using Artificial Neural Networks to Estimate the Probability of Information Security Threat Occurrences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Artificial%20Neural%20Networks%20to%20Estimate%20the%20Probability%20of%20Information%20Security%20Threat%20Occurrences&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Antonov,%20R.%20A.&rft.date=2021-12-01&rft.volume=55&rft.issue=8&rft.spage=941&rft.epage=948&rft.pages=941-948&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411621080046&rft_dat=%3Cproquest_cross%3E2634863732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634863732&rft_id=info:pmid/&rfr_iscdi=true