Software Identification by Standard Machine Learning Tools

This article considers tools for controlling software installed on personal computers of automated system users . The flaws of these software solutions are grounded, and an approach to identifying executable files with the help of a machine learning algorithm is developed and presented. This algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2021-12, Vol.55 (8), p.1175-1179
Hauptverfasser: Sukhoparov, M. E., Salakhutdinova, K. I., Lebedev, I. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 8
container_start_page 1175
container_title Automatic control and computer sciences
container_volume 55
creator Sukhoparov, M. E.
Salakhutdinova, K. I.
Lebedev, I. S.
description This article considers tools for controlling software installed on personal computers of automated system users . The flaws of these software solutions are grounded, and an approach to identifying executable files with the help of a machine learning algorithm is developed and presented. This algorithm consists in the gradient decision tree boosting on the basis of such libraries as XGBoost, LightGBM, CatBoost. The identification of programs with the help of XGBoost and LightGBM is executed. The experimental results are compared with the results of earlier studies conducted by other authors. The findings show that the developed method allows for identifying violations in the adopted security policy during information processing in automated systems.
doi_str_mv 10.3103/S0146411621080459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634862936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634862936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-677f3f31147ed10487b71d9a5bfa87b3cf85fc7d66ad316251019e1d5194458d3</originalsourceid><addsrcrecordid>eNp1UEtLxDAQDqJgXf0B3gqeq5nm0dSbLD4WVjx0BW8lbZK1y5qsSRbZf29KBQ_iaWb4XsOH0CXgawKY3DQYKKcAvAQsMGX1EcqAMVGk8-0YZSNcjPgpOgthg3HCBM_QbeNM_JJe5wulbRzM0Ms4OJt3h7yJ0irpVf4s-_fB6nyppbeDXecr57bhHJ0YuQ364mfO0OvD_Wr-VCxfHhfzu2XRl1zEgleVIYYA0EorwFRUXQWqlqwzMu2kN4KZvlKcS0XS_www1BoUg5pSJhSZoavJd-fd516H2G7c3tsU2ZacUMHLmvDEgonVexeC16bd-eFD-kMLuB0rav9UlDTlpAmJa9fa_zr_L_oGL4dmTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634862936</pqid></control><display><type>article</type><title>Software Identification by Standard Machine Learning Tools</title><source>SpringerLink Journals</source><creator>Sukhoparov, M. E. ; Salakhutdinova, K. I. ; Lebedev, I. S.</creator><creatorcontrib>Sukhoparov, M. E. ; Salakhutdinova, K. I. ; Lebedev, I. S.</creatorcontrib><description>This article considers tools for controlling software installed on personal computers of automated system users . The flaws of these software solutions are grounded, and an approach to identifying executable files with the help of a machine learning algorithm is developed and presented. This algorithm consists in the gradient decision tree boosting on the basis of such libraries as XGBoost, LightGBM, CatBoost. The identification of programs with the help of XGBoost and LightGBM is executed. The experimental results are compared with the results of earlier studies conducted by other authors. The findings show that the developed method allows for identifying violations in the adopted security policy during information processing in automated systems.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411621080459</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Automation ; Computer Science ; Control Structures and Microprogramming ; Data processing ; Decision trees ; Machine learning ; Personal computers ; Software</subject><ispartof>Automatic control and computer sciences, 2021-12, Vol.55 (8), p.1175-1179</ispartof><rights>Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 8, pp. 1175–1179. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2020, published in Problemy Informatsionnoi Bezopasnosti, Komp’yuternye Sistemy.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-677f3f31147ed10487b71d9a5bfa87b3cf85fc7d66ad316251019e1d5194458d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411621080459$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411621080459$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sukhoparov, M. E.</creatorcontrib><creatorcontrib>Salakhutdinova, K. I.</creatorcontrib><creatorcontrib>Lebedev, I. S.</creatorcontrib><title>Software Identification by Standard Machine Learning Tools</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>This article considers tools for controlling software installed on personal computers of automated system users . The flaws of these software solutions are grounded, and an approach to identifying executable files with the help of a machine learning algorithm is developed and presented. This algorithm consists in the gradient decision tree boosting on the basis of such libraries as XGBoost, LightGBM, CatBoost. The identification of programs with the help of XGBoost and LightGBM is executed. The experimental results are compared with the results of earlier studies conducted by other authors. The findings show that the developed method allows for identifying violations in the adopted security policy during information processing in automated systems.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Data processing</subject><subject>Decision trees</subject><subject>Machine learning</subject><subject>Personal computers</subject><subject>Software</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLxDAQDqJgXf0B3gqeq5nm0dSbLD4WVjx0BW8lbZK1y5qsSRbZf29KBQ_iaWb4XsOH0CXgawKY3DQYKKcAvAQsMGX1EcqAMVGk8-0YZSNcjPgpOgthg3HCBM_QbeNM_JJe5wulbRzM0Ms4OJt3h7yJ0irpVf4s-_fB6nyppbeDXecr57bhHJ0YuQ364mfO0OvD_Wr-VCxfHhfzu2XRl1zEgleVIYYA0EorwFRUXQWqlqwzMu2kN4KZvlKcS0XS_www1BoUg5pSJhSZoavJd-fd516H2G7c3tsU2ZacUMHLmvDEgonVexeC16bd-eFD-kMLuB0rav9UlDTlpAmJa9fa_zr_L_oGL4dmTw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Sukhoparov, M. E.</creator><creator>Salakhutdinova, K. I.</creator><creator>Lebedev, I. S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Software Identification by Standard Machine Learning Tools</title><author>Sukhoparov, M. E. ; Salakhutdinova, K. I. ; Lebedev, I. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-677f3f31147ed10487b71d9a5bfa87b3cf85fc7d66ad316251019e1d5194458d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Data processing</topic><topic>Decision trees</topic><topic>Machine learning</topic><topic>Personal computers</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukhoparov, M. E.</creatorcontrib><creatorcontrib>Salakhutdinova, K. I.</creatorcontrib><creatorcontrib>Lebedev, I. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukhoparov, M. E.</au><au>Salakhutdinova, K. I.</au><au>Lebedev, I. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Software Identification by Standard Machine Learning Tools</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>55</volume><issue>8</issue><spage>1175</spage><epage>1179</epage><pages>1175-1179</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>This article considers tools for controlling software installed on personal computers of automated system users . The flaws of these software solutions are grounded, and an approach to identifying executable files with the help of a machine learning algorithm is developed and presented. This algorithm consists in the gradient decision tree boosting on the basis of such libraries as XGBoost, LightGBM, CatBoost. The identification of programs with the help of XGBoost and LightGBM is executed. The experimental results are compared with the results of earlier studies conducted by other authors. The findings show that the developed method allows for identifying violations in the adopted security policy during information processing in automated systems.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0146411621080459</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2021-12, Vol.55 (8), p.1175-1179
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2634862936
source SpringerLink Journals
subjects Algorithms
Automation
Computer Science
Control Structures and Microprogramming
Data processing
Decision trees
Machine learning
Personal computers
Software
title Software Identification by Standard Machine Learning Tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Software%20Identification%20by%20Standard%20Machine%20Learning%20Tools&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Sukhoparov,%20M.%20E.&rft.date=2021-12-01&rft.volume=55&rft.issue=8&rft.spage=1175&rft.epage=1179&rft.pages=1175-1179&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411621080459&rft_dat=%3Cproquest_cross%3E2634862936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634862936&rft_id=info:pmid/&rfr_iscdi=true