Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian ( - Δ ) s in bounded open Lipschitz sets in the small order limit s → 0 + . While it is easy to see that all eigenvalues converge to 1 as s → 0 + , we show that the first order correction in these asympt...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2022-04, Vol.28 (2), Article 18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | The Journal of fourier analysis and applications |
container_volume | 28 |
creator | Feulefack, Pierre Aime Jarohs, Sven Weth, Tobias |
description | We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian
(
-
Δ
)
s
in bounded open Lipschitz sets in the small order limit
s
→
0
+
. While it is easy to see that all eigenvalues converge to 1 as
s
→
0
+
, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol
2
log
|
ξ
|
. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that
L
2
-normalized Dirichlet eigenfunctions of
(
-
Δ
)
s
corresponding to the
k
-th eigenvalue are uniformly bounded and converge to the set of
L
2
-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian. |
doi_str_mv | 10.1007/s00041-022-09908-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2634861485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704305940</galeid><sourcerecordid>A704305940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</originalsourceid><addsrcrecordid>eNp9kEtrHDEQhIcQQ5x1_kBOgpzHab1njovjR2DBAdvgm9BqWrtaNKONNBvwv7fsCeQW-tBFU19TVNN8pXBJAfT3AgCCtsBYC30PXdt9aM6p5LSVnaQfqwbVV636T83nUg4AjHLNz5vnh9HGSO7zgJmsy8t4nNMcXCHJk3mP5EfIwe0jzuQ67HD6Y-MJya-cthFH4lN-N91k6-aQJhvJxh6jdcFOF82Zt7Hgl7971TzdXD9e3bWb-9ufV-tN6wSwuXWMaYt-EM5zranyjG6VANkJD16gHLaODaiFHazkCEpsmZBWKIVaCwk9XzXflr_HnH6fsMzmkE65RimGKS46RUUnq-tyce1sRBMmn-aauc6AY3BpQh_qfa1BcJC9gAqwBXA5lZLRm2MOo80vhoJ5q9wslZtauXmv3HQV4gtUqnnaYf6X5T_UKzLBg0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634861485</pqid></control><display><type>article</type><title>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feulefack, Pierre Aime ; Jarohs, Sven ; Weth, Tobias</creator><creatorcontrib>Feulefack, Pierre Aime ; Jarohs, Sven ; Weth, Tobias</creatorcontrib><description>We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian
(
-
Δ
)
s
in bounded open Lipschitz sets in the small order limit
s
→
0
+
. While it is easy to see that all eigenvalues converge to 1 as
s
→
0
+
, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol
2
log
|
ξ
|
. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that
L
2
-normalized Dirichlet eigenfunctions of
(
-
Δ
)
s
corresponding to the
k
-th eigenvalue are uniformly bounded and converge to the set of
L
2
-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-022-09908-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Asymptotic properties ; Convergence ; Dirichlet problem ; Eigenvalues ; Eigenvectors ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Regularity ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2022-04, Vol.28 (2), Article 18</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</citedby><cites>FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</cites><orcidid>0000-0001-5347-8057 ; 0000-0002-8029-7152 ; 0000-0002-0490-861X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-022-09908-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-022-09908-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Feulefack, Pierre Aime</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Weth, Tobias</creatorcontrib><title>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian
(
-
Δ
)
s
in bounded open Lipschitz sets in the small order limit
s
→
0
+
. While it is easy to see that all eigenvalues converge to 1 as
s
→
0
+
, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol
2
log
|
ξ
|
. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that
L
2
-normalized Dirichlet eigenfunctions of
(
-
Δ
)
s
corresponding to the
k
-th eigenvalue are uniformly bounded and converge to the set of
L
2
-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Regularity</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtrHDEQhIcQQ5x1_kBOgpzHab1njovjR2DBAdvgm9BqWrtaNKONNBvwv7fsCeQW-tBFU19TVNN8pXBJAfT3AgCCtsBYC30PXdt9aM6p5LSVnaQfqwbVV636T83nUg4AjHLNz5vnh9HGSO7zgJmsy8t4nNMcXCHJk3mP5EfIwe0jzuQ67HD6Y-MJya-cthFH4lN-N91k6-aQJhvJxh6jdcFOF82Zt7Hgl7971TzdXD9e3bWb-9ufV-tN6wSwuXWMaYt-EM5zranyjG6VANkJD16gHLaODaiFHazkCEpsmZBWKIVaCwk9XzXflr_HnH6fsMzmkE65RimGKS46RUUnq-tyce1sRBMmn-aauc6AY3BpQh_qfa1BcJC9gAqwBXA5lZLRm2MOo80vhoJ5q9wslZtauXmv3HQV4gtUqnnaYf6X5T_UKzLBg0Y</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Feulefack, Pierre Aime</creator><creator>Jarohs, Sven</creator><creator>Weth, Tobias</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5347-8057</orcidid><orcidid>https://orcid.org/0000-0002-8029-7152</orcidid><orcidid>https://orcid.org/0000-0002-0490-861X</orcidid></search><sort><creationdate>20220401</creationdate><title>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</title><author>Feulefack, Pierre Aime ; Jarohs, Sven ; Weth, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Regularity</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feulefack, Pierre Aime</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Weth, Tobias</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feulefack, Pierre Aime</au><au>Jarohs, Sven</au><au>Weth, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>28</volume><issue>2</issue><artnum>18</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian
(
-
Δ
)
s
in bounded open Lipschitz sets in the small order limit
s
→
0
+
. While it is easy to see that all eigenvalues converge to 1 as
s
→
0
+
, we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol
2
log
|
ξ
|
. By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that
L
2
-normalized Dirichlet eigenfunctions of
(
-
Δ
)
s
corresponding to the
k
-th eigenvalue are uniformly bounded and converge to the set of
L
2
-normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-022-09908-8</doi><orcidid>https://orcid.org/0000-0001-5347-8057</orcidid><orcidid>https://orcid.org/0000-0002-8029-7152</orcidid><orcidid>https://orcid.org/0000-0002-0490-861X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-5869 |
ispartof | The Journal of fourier analysis and applications, 2022-04, Vol.28 (2), Article 18 |
issn | 1069-5869 1531-5851 |
language | eng |
recordid | cdi_proquest_journals_2634861485 |
source | SpringerLink Journals - AutoHoldings |
subjects | Abstract Harmonic Analysis Approximations and Expansions Asymptotic properties Convergence Dirichlet problem Eigenvalues Eigenvectors Fourier Analysis Mathematical Methods in Physics Mathematics Mathematics and Statistics Partial Differential Equations Regularity Signal,Image and Speech Processing |
title | Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Order%20Asymptotics%20of%20the%20Dirichlet%20Eigenvalue%20Problem%20for%20the%20Fractional%20Laplacian&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Feulefack,%20Pierre%20Aime&rft.date=2022-04-01&rft.volume=28&rft.issue=2&rft.artnum=18&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-022-09908-8&rft_dat=%3Cgale_proqu%3EA704305940%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634861485&rft_id=info:pmid/&rft_galeid=A704305940&rfr_iscdi=true |