Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian

We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian ( - Δ ) s in bounded open Lipschitz sets in the small order limit s → 0 + . While it is easy to see that all eigenvalues converge to 1 as s → 0 + , we show that the first order correction in these asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2022-04, Vol.28 (2), Article 18
Hauptverfasser: Feulefack, Pierre Aime, Jarohs, Sven, Weth, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 28
creator Feulefack, Pierre Aime
Jarohs, Sven
Weth, Tobias
description We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian ( - Δ ) s in bounded open Lipschitz sets in the small order limit s → 0 + . While it is easy to see that all eigenvalues converge to 1 as s → 0 + , we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log | ξ | . By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L 2 -normalized Dirichlet eigenfunctions of ( - Δ ) s corresponding to the k -th eigenvalue are uniformly bounded and converge to the set of L 2 -normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.
doi_str_mv 10.1007/s00041-022-09908-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2634861485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A704305940</galeid><sourcerecordid>A704305940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</originalsourceid><addsrcrecordid>eNp9kEtrHDEQhIcQQ5x1_kBOgpzHab1njovjR2DBAdvgm9BqWrtaNKONNBvwv7fsCeQW-tBFU19TVNN8pXBJAfT3AgCCtsBYC30PXdt9aM6p5LSVnaQfqwbVV636T83nUg4AjHLNz5vnh9HGSO7zgJmsy8t4nNMcXCHJk3mP5EfIwe0jzuQ67HD6Y-MJya-cthFH4lN-N91k6-aQJhvJxh6jdcFOF82Zt7Hgl7971TzdXD9e3bWb-9ufV-tN6wSwuXWMaYt-EM5zranyjG6VANkJD16gHLaODaiFHazkCEpsmZBWKIVaCwk9XzXflr_HnH6fsMzmkE65RimGKS46RUUnq-tyce1sRBMmn-aauc6AY3BpQh_qfa1BcJC9gAqwBXA5lZLRm2MOo80vhoJ5q9wslZtauXmv3HQV4gtUqnnaYf6X5T_UKzLBg0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634861485</pqid></control><display><type>article</type><title>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feulefack, Pierre Aime ; Jarohs, Sven ; Weth, Tobias</creator><creatorcontrib>Feulefack, Pierre Aime ; Jarohs, Sven ; Weth, Tobias</creatorcontrib><description>We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian ( - Δ ) s in bounded open Lipschitz sets in the small order limit s → 0 + . While it is easy to see that all eigenvalues converge to 1 as s → 0 + , we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log | ξ | . By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L 2 -normalized Dirichlet eigenfunctions of ( - Δ ) s corresponding to the k -th eigenvalue are uniformly bounded and converge to the set of L 2 -normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-022-09908-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Asymptotic properties ; Convergence ; Dirichlet problem ; Eigenvalues ; Eigenvectors ; Fourier Analysis ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Regularity ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2022-04, Vol.28 (2), Article 18</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</citedby><cites>FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</cites><orcidid>0000-0001-5347-8057 ; 0000-0002-8029-7152 ; 0000-0002-0490-861X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-022-09908-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-022-09908-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Feulefack, Pierre Aime</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Weth, Tobias</creatorcontrib><title>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian ( - Δ ) s in bounded open Lipschitz sets in the small order limit s → 0 + . While it is easy to see that all eigenvalues converge to 1 as s → 0 + , we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log | ξ | . By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L 2 -normalized Dirichlet eigenfunctions of ( - Δ ) s corresponding to the k -th eigenvalue are uniformly bounded and converge to the set of L 2 -normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Asymptotic properties</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Fourier Analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Regularity</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtrHDEQhIcQQ5x1_kBOgpzHab1njovjR2DBAdvgm9BqWrtaNKONNBvwv7fsCeQW-tBFU19TVNN8pXBJAfT3AgCCtsBYC30PXdt9aM6p5LSVnaQfqwbVV636T83nUg4AjHLNz5vnh9HGSO7zgJmsy8t4nNMcXCHJk3mP5EfIwe0jzuQ67HD6Y-MJya-cthFH4lN-N91k6-aQJhvJxh6jdcFOF82Zt7Hgl7971TzdXD9e3bWb-9ufV-tN6wSwuXWMaYt-EM5zranyjG6VANkJD16gHLaODaiFHazkCEpsmZBWKIVaCwk9XzXflr_HnH6fsMzmkE65RimGKS46RUUnq-tyce1sRBMmn-aauc6AY3BpQh_qfa1BcJC9gAqwBXA5lZLRm2MOo80vhoJ5q9wslZtauXmv3HQV4gtUqnnaYf6X5T_UKzLBg0Y</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Feulefack, Pierre Aime</creator><creator>Jarohs, Sven</creator><creator>Weth, Tobias</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5347-8057</orcidid><orcidid>https://orcid.org/0000-0002-8029-7152</orcidid><orcidid>https://orcid.org/0000-0002-0490-861X</orcidid></search><sort><creationdate>20220401</creationdate><title>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</title><author>Feulefack, Pierre Aime ; Jarohs, Sven ; Weth, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c227aefd4cf37716f21b640584f0f4e5dbc2de74ada53e064b245a466e7745093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Asymptotic properties</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Fourier Analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Regularity</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feulefack, Pierre Aime</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Weth, Tobias</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feulefack, Pierre Aime</au><au>Jarohs, Sven</au><au>Weth, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>28</volume><issue>2</issue><artnum>18</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional Laplacian ( - Δ ) s in bounded open Lipschitz sets in the small order limit s → 0 + . While it is easy to see that all eigenvalues converge to 1 as s → 0 + , we show that the first order correction in these asymptotics is given by the eigenvalues of the logarithmic Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log | ξ | . By this we generalize a result of Chen and the third author which was restricted to the principal eigenvalue. Moreover, we show that L 2 -normalized Dirichlet eigenfunctions of ( - Δ ) s corresponding to the k -th eigenvalue are uniformly bounded and converge to the set of L 2 -normalized eigenfunctions of the logarithmic Laplacian. In order to derive these spectral asymptotics, we establish new uniform regularity and boundary decay estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we also obtain corresponding regularity properties of eigenfunctions of the logarithmic Laplacian.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-022-09908-8</doi><orcidid>https://orcid.org/0000-0001-5347-8057</orcidid><orcidid>https://orcid.org/0000-0002-8029-7152</orcidid><orcidid>https://orcid.org/0000-0002-0490-861X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2022-04, Vol.28 (2), Article 18
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2634861485
source SpringerLink Journals - AutoHoldings
subjects Abstract Harmonic Analysis
Approximations and Expansions
Asymptotic properties
Convergence
Dirichlet problem
Eigenvalues
Eigenvectors
Fourier Analysis
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Regularity
Signal,Image and Speech Processing
title Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20Order%20Asymptotics%20of%20the%20Dirichlet%20Eigenvalue%20Problem%20for%20the%20Fractional%20Laplacian&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Feulefack,%20Pierre%20Aime&rft.date=2022-04-01&rft.volume=28&rft.issue=2&rft.artnum=18&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-022-09908-8&rft_dat=%3Cgale_proqu%3EA704305940%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634861485&rft_id=info:pmid/&rft_galeid=A704305940&rfr_iscdi=true