Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil

Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modeling earth systems and environment 2022-03, Vol.8 (1), p.647-663
Hauptverfasser: de Souza, Amaury, dos Santos, Cícero Manoel, Ihaddadene, Razika, Cavazzana, Guilherme, Abreu, Marcel Carvalho, de Oliveira-Júnior, José Francisco, Pobocikova, Ivana, de Gois, Givanildo, Lins, Taynã Maria Pinto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 663
container_issue 1
container_start_page 647
container_title Modeling earth systems and environment
container_volume 8
creator de Souza, Amaury
dos Santos, Cícero Manoel
Ihaddadene, Razika
Cavazzana, Guilherme
Abreu, Marcel Carvalho
de Oliveira-Júnior, José Francisco
Pobocikova, Ivana
de Gois, Givanildo
Lins, Taynã Maria Pinto
description Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures ( T max , T min ) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual T min and mean annual T max obtained adjusted determination coefficients ( R 2 adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for T max and from 0.71 to 0.86 for T min . Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.
doi_str_mv 10.1007/s40808-021-01096-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634670696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634670696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpH2CyxErgbCdOPJYKClIRAzBbTuIUV25cbAc1_HpSgmBjON1J997T3YfQOYErApBfhxQKKBKgJAECgif8CE0o4yzhlJDj3xnYKZqFsAEAwinnQkzQft4q2wcTsGuw3kevtxpvXRvfbI9VWw_VdspiZTyOervTXsXO64A_lDeqNNbEHnfBtGvs9XpYBOPaIaDWFpsWP6ro8NK7EByuHX7u7CW-8erT2DN00igb9OynT9Hr3e3L4j5ZPS0fFvNVUjEiYlKCrlhWcJXWKa0KnjJdZ0zoQpCcc1LmImMsZZDRWje0IJlKhYIsqwjNS8EEm6KLMXfn3XunQ5Qb1_nh6SApZynPgQs-qOioqg63et3InTdb5XtJQB4gyxGyHCDLb8jyYGKjKQzidq39X_Q_ri_lOH9W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634670696</pqid></control><display><type>article</type><title>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Souza, Amaury ; dos Santos, Cícero Manoel ; Ihaddadene, Razika ; Cavazzana, Guilherme ; Abreu, Marcel Carvalho ; de Oliveira-Júnior, José Francisco ; Pobocikova, Ivana ; de Gois, Givanildo ; Lins, Taynã Maria Pinto</creator><creatorcontrib>de Souza, Amaury ; dos Santos, Cícero Manoel ; Ihaddadene, Razika ; Cavazzana, Guilherme ; Abreu, Marcel Carvalho ; de Oliveira-Júnior, José Francisco ; Pobocikova, Ivana ; de Gois, Givanildo ; Lins, Taynã Maria Pinto</creatorcontrib><description>Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures ( T max , T min ) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual T min and mean annual T max obtained adjusted determination coefficients ( R 2 adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for T max and from 0.71 to 0.86 for T min . Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-021-01096-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air temperature ; Annual ; Chemistry and Earth Sciences ; Climate ; Coefficients ; Computer Science ; Digital Elevation Models ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Geographical coordinates ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Monthly ; Original Article ; Physics ; Radar ; Radar imaging ; Regression analysis ; Regression models ; Statistical analysis ; Statistics for Engineering ; Temperature ; Temperature data ; Weather stations ; Websites</subject><ispartof>Modeling earth systems and environment, 2022-03, Vol.8 (1), p.647-663</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</citedby><cites>FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</cites><orcidid>0000-0003-4357-260X ; 0000-0001-9306-5214 ; 0000-0002-6457-421X ; 0000-0001-8168-1482 ; 0000-0002-8438-2055 ; 0000-0001-9849-2522 ; 0000-0001-6507-4674 ; 0000-0001-6878-3687 ; 0000-0002-6131-7605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-021-01096-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-021-01096-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>de Souza, Amaury</creatorcontrib><creatorcontrib>dos Santos, Cícero Manoel</creatorcontrib><creatorcontrib>Ihaddadene, Razika</creatorcontrib><creatorcontrib>Cavazzana, Guilherme</creatorcontrib><creatorcontrib>Abreu, Marcel Carvalho</creatorcontrib><creatorcontrib>de Oliveira-Júnior, José Francisco</creatorcontrib><creatorcontrib>Pobocikova, Ivana</creatorcontrib><creatorcontrib>de Gois, Givanildo</creatorcontrib><creatorcontrib>Lins, Taynã Maria Pinto</creatorcontrib><title>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures ( T max , T min ) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual T min and mean annual T max obtained adjusted determination coefficients ( R 2 adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for T max and from 0.71 to 0.86 for T min . Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.</description><subject>Air temperature</subject><subject>Annual</subject><subject>Chemistry and Earth Sciences</subject><subject>Climate</subject><subject>Coefficients</subject><subject>Computer Science</subject><subject>Digital Elevation Models</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Geographical coordinates</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Monthly</subject><subject>Original Article</subject><subject>Physics</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Weather stations</subject><subject>Websites</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhS0EElXpH2CyxErgbCdOPJYKClIRAzBbTuIUV25cbAc1_HpSgmBjON1J997T3YfQOYErApBfhxQKKBKgJAECgif8CE0o4yzhlJDj3xnYKZqFsAEAwinnQkzQft4q2wcTsGuw3kevtxpvXRvfbI9VWw_VdspiZTyOervTXsXO64A_lDeqNNbEHnfBtGvs9XpYBOPaIaDWFpsWP6ro8NK7EByuHX7u7CW-8erT2DN00igb9OynT9Hr3e3L4j5ZPS0fFvNVUjEiYlKCrlhWcJXWKa0KnjJdZ0zoQpCcc1LmImMsZZDRWje0IJlKhYIsqwjNS8EEm6KLMXfn3XunQ5Qb1_nh6SApZynPgQs-qOioqg63et3InTdb5XtJQB4gyxGyHCDLb8jyYGKjKQzidq39X_Q_ri_lOH9W</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>de Souza, Amaury</creator><creator>dos Santos, Cícero Manoel</creator><creator>Ihaddadene, Razika</creator><creator>Cavazzana, Guilherme</creator><creator>Abreu, Marcel Carvalho</creator><creator>de Oliveira-Júnior, José Francisco</creator><creator>Pobocikova, Ivana</creator><creator>de Gois, Givanildo</creator><creator>Lins, Taynã Maria Pinto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0003-4357-260X</orcidid><orcidid>https://orcid.org/0000-0001-9306-5214</orcidid><orcidid>https://orcid.org/0000-0002-6457-421X</orcidid><orcidid>https://orcid.org/0000-0001-8168-1482</orcidid><orcidid>https://orcid.org/0000-0002-8438-2055</orcidid><orcidid>https://orcid.org/0000-0001-9849-2522</orcidid><orcidid>https://orcid.org/0000-0001-6507-4674</orcidid><orcidid>https://orcid.org/0000-0001-6878-3687</orcidid><orcidid>https://orcid.org/0000-0002-6131-7605</orcidid></search><sort><creationdate>20220301</creationdate><title>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</title><author>de Souza, Amaury ; dos Santos, Cícero Manoel ; Ihaddadene, Razika ; Cavazzana, Guilherme ; Abreu, Marcel Carvalho ; de Oliveira-Júnior, José Francisco ; Pobocikova, Ivana ; de Gois, Givanildo ; Lins, Taynã Maria Pinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Annual</topic><topic>Chemistry and Earth Sciences</topic><topic>Climate</topic><topic>Coefficients</topic><topic>Computer Science</topic><topic>Digital Elevation Models</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Geographical coordinates</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Monthly</topic><topic>Original Article</topic><topic>Physics</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Weather stations</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Amaury</creatorcontrib><creatorcontrib>dos Santos, Cícero Manoel</creatorcontrib><creatorcontrib>Ihaddadene, Razika</creatorcontrib><creatorcontrib>Cavazzana, Guilherme</creatorcontrib><creatorcontrib>Abreu, Marcel Carvalho</creatorcontrib><creatorcontrib>de Oliveira-Júnior, José Francisco</creatorcontrib><creatorcontrib>Pobocikova, Ivana</creatorcontrib><creatorcontrib>de Gois, Givanildo</creatorcontrib><creatorcontrib>Lins, Taynã Maria Pinto</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Amaury</au><au>dos Santos, Cícero Manoel</au><au>Ihaddadene, Razika</au><au>Cavazzana, Guilherme</au><au>Abreu, Marcel Carvalho</au><au>de Oliveira-Júnior, José Francisco</au><au>Pobocikova, Ivana</au><au>de Gois, Givanildo</au><au>Lins, Taynã Maria Pinto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>647</spage><epage>663</epage><pages>647-663</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures ( T max , T min ) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual T min and mean annual T max obtained adjusted determination coefficients ( R 2 adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for T max and from 0.71 to 0.86 for T min . Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-021-01096-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4357-260X</orcidid><orcidid>https://orcid.org/0000-0001-9306-5214</orcidid><orcidid>https://orcid.org/0000-0002-6457-421X</orcidid><orcidid>https://orcid.org/0000-0001-8168-1482</orcidid><orcidid>https://orcid.org/0000-0002-8438-2055</orcidid><orcidid>https://orcid.org/0000-0001-9849-2522</orcidid><orcidid>https://orcid.org/0000-0001-6507-4674</orcidid><orcidid>https://orcid.org/0000-0001-6878-3687</orcidid><orcidid>https://orcid.org/0000-0002-6131-7605</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2363-6203
ispartof Modeling earth systems and environment, 2022-03, Vol.8 (1), p.647-663
issn 2363-6203
2363-6211
language eng
recordid cdi_proquest_journals_2634670696
source SpringerLink Journals - AutoHoldings
subjects Air temperature
Annual
Chemistry and Earth Sciences
Climate
Coefficients
Computer Science
Digital Elevation Models
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Ecosystems
Environment
Geographical coordinates
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Monthly
Original Article
Physics
Radar
Radar imaging
Regression analysis
Regression models
Statistical analysis
Statistics for Engineering
Temperature
Temperature data
Weather stations
Websites
title Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20extreme%20monthly%20and%20annual%20air%20temperatures%20variability%20using%20regression%20model%20in%20Mato%20Grosso%20do%20Sul,%20Brazil&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=de%20Souza,%20Amaury&rft.date=2022-03-01&rft.volume=8&rft.issue=1&rft.spage=647&rft.epage=663&rft.pages=647-663&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-021-01096-6&rft_dat=%3Cproquest_cross%3E2634670696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634670696&rft_id=info:pmid/&rfr_iscdi=true