Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil
Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aim...
Gespeichert in:
Veröffentlicht in: | Modeling earth systems and environment 2022-03, Vol.8 (1), p.647-663 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 663 |
---|---|
container_issue | 1 |
container_start_page | 647 |
container_title | Modeling earth systems and environment |
container_volume | 8 |
creator | de Souza, Amaury dos Santos, Cícero Manoel Ihaddadene, Razika Cavazzana, Guilherme Abreu, Marcel Carvalho de Oliveira-Júnior, José Francisco Pobocikova, Ivana de Gois, Givanildo Lins, Taynã Maria Pinto |
description | Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures (
T
max
,
T
min
) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual
T
min
and mean annual
T
max
obtained adjusted determination coefficients (
R
2
adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for
T
max
and from 0.71 to 0.86 for
T
min
. Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS. |
doi_str_mv | 10.1007/s40808-021-01096-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634670696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634670696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EElXpH2CyxErgbCdOPJYKClIRAzBbTuIUV25cbAc1_HpSgmBjON1J997T3YfQOYErApBfhxQKKBKgJAECgif8CE0o4yzhlJDj3xnYKZqFsAEAwinnQkzQft4q2wcTsGuw3kevtxpvXRvfbI9VWw_VdspiZTyOervTXsXO64A_lDeqNNbEHnfBtGvs9XpYBOPaIaDWFpsWP6ro8NK7EByuHX7u7CW-8erT2DN00igb9OynT9Hr3e3L4j5ZPS0fFvNVUjEiYlKCrlhWcJXWKa0KnjJdZ0zoQpCcc1LmImMsZZDRWje0IJlKhYIsqwjNS8EEm6KLMXfn3XunQ5Qb1_nh6SApZynPgQs-qOioqg63et3InTdb5XtJQB4gyxGyHCDLb8jyYGKjKQzidq39X_Q_ri_lOH9W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634670696</pqid></control><display><type>article</type><title>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</title><source>SpringerLink Journals - AutoHoldings</source><creator>de Souza, Amaury ; dos Santos, Cícero Manoel ; Ihaddadene, Razika ; Cavazzana, Guilherme ; Abreu, Marcel Carvalho ; de Oliveira-Júnior, José Francisco ; Pobocikova, Ivana ; de Gois, Givanildo ; Lins, Taynã Maria Pinto</creator><creatorcontrib>de Souza, Amaury ; dos Santos, Cícero Manoel ; Ihaddadene, Razika ; Cavazzana, Guilherme ; Abreu, Marcel Carvalho ; de Oliveira-Júnior, José Francisco ; Pobocikova, Ivana ; de Gois, Givanildo ; Lins, Taynã Maria Pinto</creatorcontrib><description>Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures (
T
max
,
T
min
) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual
T
min
and mean annual
T
max
obtained adjusted determination coefficients (
R
2
adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for
T
max
and from 0.71 to 0.86 for
T
min
. Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-021-01096-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Air temperature ; Annual ; Chemistry and Earth Sciences ; Climate ; Coefficients ; Computer Science ; Digital Elevation Models ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Ecosystems ; Environment ; Geographical coordinates ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Monthly ; Original Article ; Physics ; Radar ; Radar imaging ; Regression analysis ; Regression models ; Statistical analysis ; Statistics for Engineering ; Temperature ; Temperature data ; Weather stations ; Websites</subject><ispartof>Modeling earth systems and environment, 2022-03, Vol.8 (1), p.647-663</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</citedby><cites>FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</cites><orcidid>0000-0003-4357-260X ; 0000-0001-9306-5214 ; 0000-0002-6457-421X ; 0000-0001-8168-1482 ; 0000-0002-8438-2055 ; 0000-0001-9849-2522 ; 0000-0001-6507-4674 ; 0000-0001-6878-3687 ; 0000-0002-6131-7605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-021-01096-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-021-01096-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>de Souza, Amaury</creatorcontrib><creatorcontrib>dos Santos, Cícero Manoel</creatorcontrib><creatorcontrib>Ihaddadene, Razika</creatorcontrib><creatorcontrib>Cavazzana, Guilherme</creatorcontrib><creatorcontrib>Abreu, Marcel Carvalho</creatorcontrib><creatorcontrib>de Oliveira-Júnior, José Francisco</creatorcontrib><creatorcontrib>Pobocikova, Ivana</creatorcontrib><creatorcontrib>de Gois, Givanildo</creatorcontrib><creatorcontrib>Lins, Taynã Maria Pinto</creatorcontrib><title>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures (
T
max
,
T
min
) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual
T
min
and mean annual
T
max
obtained adjusted determination coefficients (
R
2
adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for
T
max
and from 0.71 to 0.86 for
T
min
. Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.</description><subject>Air temperature</subject><subject>Annual</subject><subject>Chemistry and Earth Sciences</subject><subject>Climate</subject><subject>Coefficients</subject><subject>Computer Science</subject><subject>Digital Elevation Models</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Geographical coordinates</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Monthly</subject><subject>Original Article</subject><subject>Physics</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Temperature</subject><subject>Temperature data</subject><subject>Weather stations</subject><subject>Websites</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kDFPwzAQhS0EElXpH2CyxErgbCdOPJYKClIRAzBbTuIUV25cbAc1_HpSgmBjON1J997T3YfQOYErApBfhxQKKBKgJAECgif8CE0o4yzhlJDj3xnYKZqFsAEAwinnQkzQft4q2wcTsGuw3kevtxpvXRvfbI9VWw_VdspiZTyOervTXsXO64A_lDeqNNbEHnfBtGvs9XpYBOPaIaDWFpsWP6ro8NK7EByuHX7u7CW-8erT2DN00igb9OynT9Hr3e3L4j5ZPS0fFvNVUjEiYlKCrlhWcJXWKa0KnjJdZ0zoQpCcc1LmImMsZZDRWje0IJlKhYIsqwjNS8EEm6KLMXfn3XunQ5Qb1_nh6SApZynPgQs-qOioqg63et3InTdb5XtJQB4gyxGyHCDLb8jyYGKjKQzidq39X_Q_ri_lOH9W</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>de Souza, Amaury</creator><creator>dos Santos, Cícero Manoel</creator><creator>Ihaddadene, Razika</creator><creator>Cavazzana, Guilherme</creator><creator>Abreu, Marcel Carvalho</creator><creator>de Oliveira-Júnior, José Francisco</creator><creator>Pobocikova, Ivana</creator><creator>de Gois, Givanildo</creator><creator>Lins, Taynã Maria Pinto</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0003-4357-260X</orcidid><orcidid>https://orcid.org/0000-0001-9306-5214</orcidid><orcidid>https://orcid.org/0000-0002-6457-421X</orcidid><orcidid>https://orcid.org/0000-0001-8168-1482</orcidid><orcidid>https://orcid.org/0000-0002-8438-2055</orcidid><orcidid>https://orcid.org/0000-0001-9849-2522</orcidid><orcidid>https://orcid.org/0000-0001-6507-4674</orcidid><orcidid>https://orcid.org/0000-0001-6878-3687</orcidid><orcidid>https://orcid.org/0000-0002-6131-7605</orcidid></search><sort><creationdate>20220301</creationdate><title>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</title><author>de Souza, Amaury ; dos Santos, Cícero Manoel ; Ihaddadene, Razika ; Cavazzana, Guilherme ; Abreu, Marcel Carvalho ; de Oliveira-Júnior, José Francisco ; Pobocikova, Ivana ; de Gois, Givanildo ; Lins, Taynã Maria Pinto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b0ec3586a4d42c8643ed539e8917661b7953343052def2815a49a055c127b9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Annual</topic><topic>Chemistry and Earth Sciences</topic><topic>Climate</topic><topic>Coefficients</topic><topic>Computer Science</topic><topic>Digital Elevation Models</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Geographical coordinates</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Monthly</topic><topic>Original Article</topic><topic>Physics</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Temperature</topic><topic>Temperature data</topic><topic>Weather stations</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Souza, Amaury</creatorcontrib><creatorcontrib>dos Santos, Cícero Manoel</creatorcontrib><creatorcontrib>Ihaddadene, Razika</creatorcontrib><creatorcontrib>Cavazzana, Guilherme</creatorcontrib><creatorcontrib>Abreu, Marcel Carvalho</creatorcontrib><creatorcontrib>de Oliveira-Júnior, José Francisco</creatorcontrib><creatorcontrib>Pobocikova, Ivana</creatorcontrib><creatorcontrib>de Gois, Givanildo</creatorcontrib><creatorcontrib>Lins, Taynã Maria Pinto</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Souza, Amaury</au><au>dos Santos, Cícero Manoel</au><au>Ihaddadene, Razika</au><au>Cavazzana, Guilherme</au><au>Abreu, Marcel Carvalho</au><au>de Oliveira-Júnior, José Francisco</au><au>Pobocikova, Ivana</au><au>de Gois, Givanildo</au><au>Lins, Taynã Maria Pinto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>647</spage><epage>663</epage><pages>647-663</pages><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>Air temperature is a meteorological variable that influences the climate in the world. The availability of air temperature data is of concern in Brazil, particularly in the State of Mato Grosso do Sul (MS), since most weather stations are concentrated on the country's coast. Thus, the study aimed to develop models to estimate the average monthly and annual air temperatures (maximum and minimum) for the site of the State of MS. The linear multiple regression technique is adopted in this study. Temperature data from 1978 to 2018 were used, corresponding to 78 meteorological stations on the website of the State of MS. Geographical coordinates (latitude, longitude and altitude) were used as predictor variables for the models, and monthly and annual extreme temperatures (
T
max
,
T
min
) models were fitted. The regression models used in the study were statistically tested (α ≤ 0.01). The models of mean annual
T
min
and mean annual
T
max
obtained adjusted determination coefficients (
R
2
adj) of 81.2% and 74.9%, respectively. The monthly average temperature models showed adjusted coefficients of determination between 0.69 and 0.90 for
T
max
and from 0.71 to 0.86 for
T
min
. Another method used to validate our results, the digital elevation model for the State of MS, obtained through a Shuttle Radar Topography Mission radar image. The obtained results fitted well with these of the annual and monthly models for extreme temperatures. The temperature models used in the study are duly suitable to predict air temperature in all sites in the State of MS.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-021-01096-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4357-260X</orcidid><orcidid>https://orcid.org/0000-0001-9306-5214</orcidid><orcidid>https://orcid.org/0000-0002-6457-421X</orcidid><orcidid>https://orcid.org/0000-0001-8168-1482</orcidid><orcidid>https://orcid.org/0000-0002-8438-2055</orcidid><orcidid>https://orcid.org/0000-0001-9849-2522</orcidid><orcidid>https://orcid.org/0000-0001-6507-4674</orcidid><orcidid>https://orcid.org/0000-0001-6878-3687</orcidid><orcidid>https://orcid.org/0000-0002-6131-7605</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2022-03, Vol.8 (1), p.647-663 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_2634670696 |
source | SpringerLink Journals - AutoHoldings |
subjects | Air temperature Annual Chemistry and Earth Sciences Climate Coefficients Computer Science Digital Elevation Models Earth and Environmental Science Earth Sciences Earth System Sciences Ecosystems Environment Geographical coordinates Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Monthly Original Article Physics Radar Radar imaging Regression analysis Regression models Statistical analysis Statistics for Engineering Temperature Temperature data Weather stations Websites |
title | Analysis of extreme monthly and annual air temperatures variability using regression model in Mato Grosso do Sul, Brazil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20extreme%20monthly%20and%20annual%20air%20temperatures%20variability%20using%20regression%20model%20in%20Mato%20Grosso%20do%20Sul,%20Brazil&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=de%20Souza,%20Amaury&rft.date=2022-03-01&rft.volume=8&rft.issue=1&rft.spage=647&rft.epage=663&rft.pages=647-663&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-021-01096-6&rft_dat=%3Cproquest_cross%3E2634670696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634670696&rft_id=info:pmid/&rfr_iscdi=true |