Globally Optimal Boresight Alignment of UAV-LiDAR Systems

In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Gopinath, Smitha, Hijazi, Hassan L, Collins, Adam, Julian Dann Nathan Lemons, Schultz-Fellenz, Emily, Russell, Bent, Hijazi, Amira, Riemersma, Gert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gopinath, Smitha
Hijazi, Hassan L
Collins, Adam
Julian Dann Nathan Lemons
Schultz-Fellenz, Emily
Russell, Bent
Hijazi, Amira
Riemersma, Gert
description In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2634669531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634669531</sourcerecordid><originalsourceid>FETCH-proquest_journals_26346695313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdM_JT0rMyalU8C8oycxNzFFwyi9KLc5MzyhRcMzJTM_LTc0rUchPUwh1DNP1yXRxDFIIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzYxMzM0tTY0Nj4lQBACdrNZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634669531</pqid></control><display><type>article</type><title>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</title><source>Free E- Journals</source><creator>Gopinath, Smitha ; Hijazi, Hassan L ; Collins, Adam ; Julian Dann Nathan Lemons ; Schultz-Fellenz, Emily ; Russell, Bent ; Hijazi, Amira ; Riemersma, Gert</creator><creatorcontrib>Gopinath, Smitha ; Hijazi, Hassan L ; Collins, Adam ; Julian Dann Nathan Lemons ; Schultz-Fellenz, Emily ; Russell, Bent ; Hijazi, Amira ; Riemersma, Gert</creatorcontrib><description>In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Boresight error ; Boresights ; Inertial navigation ; Lidar ; Misalignment ; Mixed integer ; Navigation systems ; Three dimensional models ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gopinath, Smitha</creatorcontrib><creatorcontrib>Hijazi, Hassan L</creatorcontrib><creatorcontrib>Collins, Adam</creatorcontrib><creatorcontrib>Julian Dann Nathan Lemons</creatorcontrib><creatorcontrib>Schultz-Fellenz, Emily</creatorcontrib><creatorcontrib>Russell, Bent</creatorcontrib><creatorcontrib>Hijazi, Amira</creatorcontrib><creatorcontrib>Riemersma, Gert</creatorcontrib><title>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</title><title>arXiv.org</title><description>In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.</description><subject>Algorithms</subject><subject>Boresight error</subject><subject>Boresights</subject><subject>Inertial navigation</subject><subject>Lidar</subject><subject>Misalignment</subject><subject>Mixed integer</subject><subject>Navigation systems</subject><subject>Three dimensional models</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdM_JT0rMyalU8C8oycxNzFFwyi9KLc5MzyhRcMzJTM_LTc0rUchPUwh1DNP1yXRxDFIIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzYxMzM0tTY0Nj4lQBACdrNZw</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Gopinath, Smitha</creator><creator>Hijazi, Hassan L</creator><creator>Collins, Adam</creator><creator>Julian Dann Nathan Lemons</creator><creator>Schultz-Fellenz, Emily</creator><creator>Russell, Bent</creator><creator>Hijazi, Amira</creator><creator>Riemersma, Gert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220228</creationdate><title>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</title><author>Gopinath, Smitha ; Hijazi, Hassan L ; Collins, Adam ; Julian Dann Nathan Lemons ; Schultz-Fellenz, Emily ; Russell, Bent ; Hijazi, Amira ; Riemersma, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26346695313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boresight error</topic><topic>Boresights</topic><topic>Inertial navigation</topic><topic>Lidar</topic><topic>Misalignment</topic><topic>Mixed integer</topic><topic>Navigation systems</topic><topic>Three dimensional models</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Gopinath, Smitha</creatorcontrib><creatorcontrib>Hijazi, Hassan L</creatorcontrib><creatorcontrib>Collins, Adam</creatorcontrib><creatorcontrib>Julian Dann Nathan Lemons</creatorcontrib><creatorcontrib>Schultz-Fellenz, Emily</creatorcontrib><creatorcontrib>Russell, Bent</creatorcontrib><creatorcontrib>Hijazi, Amira</creatorcontrib><creatorcontrib>Riemersma, Gert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopinath, Smitha</au><au>Hijazi, Hassan L</au><au>Collins, Adam</au><au>Julian Dann Nathan Lemons</au><au>Schultz-Fellenz, Emily</au><au>Russell, Bent</au><au>Hijazi, Amira</au><au>Riemersma, Gert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</atitle><jtitle>arXiv.org</jtitle><date>2022-02-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2634669531
source Free E- Journals
subjects Algorithms
Boresight error
Boresights
Inertial navigation
Lidar
Misalignment
Mixed integer
Navigation systems
Three dimensional models
Unmanned aerial vehicles
title Globally Optimal Boresight Alignment of UAV-LiDAR Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Globally%20Optimal%20Boresight%20Alignment%20of%20UAV-LiDAR%20Systems&rft.jtitle=arXiv.org&rft.au=Gopinath,%20Smitha&rft.date=2022-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2634669531%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634669531&rft_id=info:pmid/&rfr_iscdi=true