Globally Optimal Boresight Alignment of UAV-LiDAR Systems
In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gopinath, Smitha Hijazi, Hassan L Collins, Adam Julian Dann Nathan Lemons Schultz-Fellenz, Emily Russell, Bent Hijazi, Amira Riemersma, Gert |
description | In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2634669531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634669531</sourcerecordid><originalsourceid>FETCH-proquest_journals_26346695313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdM_JT0rMyalU8C8oycxNzFFwyi9KLc5MzyhRcMzJTM_LTc0rUchPUwh1DNP1yXRxDFIIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzYxMzM0tTY0Nj4lQBACdrNZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634669531</pqid></control><display><type>article</type><title>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</title><source>Free E- Journals</source><creator>Gopinath, Smitha ; Hijazi, Hassan L ; Collins, Adam ; Julian Dann Nathan Lemons ; Schultz-Fellenz, Emily ; Russell, Bent ; Hijazi, Amira ; Riemersma, Gert</creator><creatorcontrib>Gopinath, Smitha ; Hijazi, Hassan L ; Collins, Adam ; Julian Dann Nathan Lemons ; Schultz-Fellenz, Emily ; Russell, Bent ; Hijazi, Amira ; Riemersma, Gert</creatorcontrib><description>In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Boresight error ; Boresights ; Inertial navigation ; Lidar ; Misalignment ; Mixed integer ; Navigation systems ; Three dimensional models ; Unmanned aerial vehicles</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gopinath, Smitha</creatorcontrib><creatorcontrib>Hijazi, Hassan L</creatorcontrib><creatorcontrib>Collins, Adam</creatorcontrib><creatorcontrib>Julian Dann Nathan Lemons</creatorcontrib><creatorcontrib>Schultz-Fellenz, Emily</creatorcontrib><creatorcontrib>Russell, Bent</creatorcontrib><creatorcontrib>Hijazi, Amira</creatorcontrib><creatorcontrib>Riemersma, Gert</creatorcontrib><title>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</title><title>arXiv.org</title><description>In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.</description><subject>Algorithms</subject><subject>Boresight error</subject><subject>Boresights</subject><subject>Inertial navigation</subject><subject>Lidar</subject><subject>Misalignment</subject><subject>Mixed integer</subject><subject>Navigation systems</subject><subject>Three dimensional models</subject><subject>Unmanned aerial vehicles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdM_JT0rMyalU8C8oycxNzFFwyi9KLc5MzyhRcMzJTM_LTc0rUchPUwh1DNP1yXRxDFIIriwuSc0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzYxMzM0tTY0Nj4lQBACdrNZw</recordid><startdate>20220228</startdate><enddate>20220228</enddate><creator>Gopinath, Smitha</creator><creator>Hijazi, Hassan L</creator><creator>Collins, Adam</creator><creator>Julian Dann Nathan Lemons</creator><creator>Schultz-Fellenz, Emily</creator><creator>Russell, Bent</creator><creator>Hijazi, Amira</creator><creator>Riemersma, Gert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220228</creationdate><title>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</title><author>Gopinath, Smitha ; Hijazi, Hassan L ; Collins, Adam ; Julian Dann Nathan Lemons ; Schultz-Fellenz, Emily ; Russell, Bent ; Hijazi, Amira ; Riemersma, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26346695313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Boresight error</topic><topic>Boresights</topic><topic>Inertial navigation</topic><topic>Lidar</topic><topic>Misalignment</topic><topic>Mixed integer</topic><topic>Navigation systems</topic><topic>Three dimensional models</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Gopinath, Smitha</creatorcontrib><creatorcontrib>Hijazi, Hassan L</creatorcontrib><creatorcontrib>Collins, Adam</creatorcontrib><creatorcontrib>Julian Dann Nathan Lemons</creatorcontrib><creatorcontrib>Schultz-Fellenz, Emily</creatorcontrib><creatorcontrib>Russell, Bent</creatorcontrib><creatorcontrib>Hijazi, Amira</creatorcontrib><creatorcontrib>Riemersma, Gert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gopinath, Smitha</au><au>Hijazi, Hassan L</au><au>Collins, Adam</au><au>Julian Dann Nathan Lemons</au><au>Schultz-Fellenz, Emily</au><au>Russell, Bent</au><au>Hijazi, Amira</au><au>Riemersma, Gert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Globally Optimal Boresight Alignment of UAV-LiDAR Systems</atitle><jtitle>arXiv.org</jtitle><date>2022-02-28</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In airborne light detection and ranging (LiDAR) systems, misalignments between the LiDAR-scanner and the inertial navigation system (INS) mounted on an unmanned aerial vehicle (UAV)'s frame can lead to inaccurate 3D point clouds. Determining the orientation offset, or boresight error is key to many LiDAR-based applications. In this work, we introduce a mixed-integer quadratically constrained quadratic program (MIQCQP) that can globally solve this misalignment problem. We also propose a nested spatial branch and bound (nsBB) algorithm that improves computational performance. The nsBB relies on novel preprocessing steps that progressively reduce the problem size. In addition, an adaptive grid search (aGS) allowing us to obtain quick heuristic solutions is presented. Our algorithms are open-source, multi-threaded and multi-machine compatible.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2634669531 |
source | Free E- Journals |
subjects | Algorithms Boresight error Boresights Inertial navigation Lidar Misalignment Mixed integer Navigation systems Three dimensional models Unmanned aerial vehicles |
title | Globally Optimal Boresight Alignment of UAV-LiDAR Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A09%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Globally%20Optimal%20Boresight%20Alignment%20of%20UAV-LiDAR%20Systems&rft.jtitle=arXiv.org&rft.au=Gopinath,%20Smitha&rft.date=2022-02-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2634669531%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634669531&rft_id=info:pmid/&rfr_iscdi=true |