Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure
The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat t...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2022-04, Vol.147 (7), p.4711-4729 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4729 |
---|---|
container_issue | 7 |
container_start_page | 4711 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 147 |
creator | Subhani, Shaik kumar, Rajendran Senthil |
description | The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0
0
, 30
0
, 45
0
, 60
0
, 70
0
and 90
0
. The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45
0
, because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45
0
= 10.58%. |
doi_str_mv | 10.1007/s10973-021-10829-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2634585171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695327625</galeid><sourcerecordid>A695327625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</originalsourceid><addsrcrecordid>eNp9UMtKBDEQHETB5w94CngezWOTSY6y-ALRg3rwFHqyHR2ZTTTJKP690RG8SR26aKqqm2qaQ0aPGaXdSWbUdKKlnLWMam5as9HsMKl1yw1Xm5WLyhWTdLvZzfmFUmoMZTvN4w2UKcFIljG8oytDDOQSoZD7BCF7TOQsPENwuMZQSPRkOSQ3jZDIbZ8LuBHJx1Ceh0Du3iZIWOVujHlKuN9seRgzHvzOvebh_Ox-edle315cLU-vWyekLm3fgetZT52EzjitVj1Kr1aAwvccei00KKo6BFhUCL8QUsgetPEMEbkUe83RnPua4tuEudiXOKVQT1quxEJqyTpWVcez6glGtEPwsSRwFStcDy4G9EPdnyojBe_UTyyfDS7FnBN6-5qGNaRPy6j97tzOndvauf3p3JpqErMpV3F4wvT3yz-uL7m1has</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634585171</pqid></control><display><type>article</type><title>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Subhani, Shaik ; kumar, Rajendran Senthil</creator><creatorcontrib>Subhani, Shaik ; kumar, Rajendran Senthil</creatorcontrib><description>The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0
0
, 30
0
, 45
0
, 60
0
, 70
0
and 90
0
. The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45
0
, because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45
0
= 10.58%.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-021-10829-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Barriers ; Boiler furnaces ; Boundary conditions ; Building design ; Chemistry ; Chemistry and Materials Science ; Convective heat transfer ; Electronic packaging ; Enclosures ; Energy storage ; Environmental engineering ; Force and energy ; Free convection ; Furnaces ; Heat storage ; Heat transfer ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Nuclear facilities ; Nuclear reactors ; Nuclear safety ; Physical Chemistry ; Polymer Sciences ; Thermal energy ; Thermophysical properties ; Vorticity ; Winglets ; Working fluids</subject><ispartof>Journal of thermal analysis and calorimetry, 2022-04, Vol.147 (7), p.4711-4729</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</citedby><cites>FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</cites><orcidid>0000-0001-8327-1815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-021-10829-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-021-10829-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Subhani, Shaik</creatorcontrib><creatorcontrib>kumar, Rajendran Senthil</creatorcontrib><title>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0
0
, 30
0
, 45
0
, 60
0
, 70
0
and 90
0
. The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45
0
, because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45
0
= 10.58%.</description><subject>Analytical Chemistry</subject><subject>Barriers</subject><subject>Boiler furnaces</subject><subject>Boundary conditions</subject><subject>Building design</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Convective heat transfer</subject><subject>Electronic packaging</subject><subject>Enclosures</subject><subject>Energy storage</subject><subject>Environmental engineering</subject><subject>Force and energy</subject><subject>Free convection</subject><subject>Furnaces</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear facilities</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Thermal energy</subject><subject>Thermophysical properties</subject><subject>Vorticity</subject><subject>Winglets</subject><subject>Working fluids</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQHETB5w94CngezWOTSY6y-ALRg3rwFHqyHR2ZTTTJKP690RG8SR26aKqqm2qaQ0aPGaXdSWbUdKKlnLWMam5as9HsMKl1yw1Xm5WLyhWTdLvZzfmFUmoMZTvN4w2UKcFIljG8oytDDOQSoZD7BCF7TOQsPENwuMZQSPRkOSQ3jZDIbZ8LuBHJx1Ceh0Du3iZIWOVujHlKuN9seRgzHvzOvebh_Ox-edle315cLU-vWyekLm3fgetZT52EzjitVj1Kr1aAwvccei00KKo6BFhUCL8QUsgetPEMEbkUe83RnPua4tuEudiXOKVQT1quxEJqyTpWVcez6glGtEPwsSRwFStcDy4G9EPdnyojBe_UTyyfDS7FnBN6-5qGNaRPy6j97tzOndvauf3p3JpqErMpV3F4wvT3yz-uL7m1has</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Subhani, Shaik</creator><creator>kumar, Rajendran Senthil</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8327-1815</orcidid></search><sort><creationdate>20220401</creationdate><title>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</title><author>Subhani, Shaik ; kumar, Rajendran Senthil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Barriers</topic><topic>Boiler furnaces</topic><topic>Boundary conditions</topic><topic>Building design</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Convective heat transfer</topic><topic>Electronic packaging</topic><topic>Enclosures</topic><topic>Energy storage</topic><topic>Environmental engineering</topic><topic>Force and energy</topic><topic>Free convection</topic><topic>Furnaces</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear facilities</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Thermal energy</topic><topic>Thermophysical properties</topic><topic>Vorticity</topic><topic>Winglets</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subhani, Shaik</creatorcontrib><creatorcontrib>kumar, Rajendran Senthil</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subhani, Shaik</au><au>kumar, Rajendran Senthil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>147</volume><issue>7</issue><spage>4711</spage><epage>4729</epage><pages>4711-4729</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0
0
, 30
0
, 45
0
, 60
0
, 70
0
and 90
0
. The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45
0
, because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45
0
= 10.58%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-021-10829-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8327-1815</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2022-04, Vol.147 (7), p.4711-4729 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2634585171 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Barriers Boiler furnaces Boundary conditions Building design Chemistry Chemistry and Materials Science Convective heat transfer Electronic packaging Enclosures Energy storage Environmental engineering Force and energy Free convection Furnaces Heat storage Heat transfer Inorganic Chemistry Measurement Science and Instrumentation Nuclear facilities Nuclear reactors Nuclear safety Physical Chemistry Polymer Sciences Thermal energy Thermophysical properties Vorticity Winglets Working fluids |
title | Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Convection%20Heat%20Transfer%20Enhancement%20of%20Circular%20Obstacle%20within%20Square%20Enclosure&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Subhani,%20Shaik&rft.date=2022-04-01&rft.volume=147&rft.issue=7&rft.spage=4711&rft.epage=4729&rft.pages=4711-4729&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-021-10829-9&rft_dat=%3Cgale_proqu%3EA695327625%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634585171&rft_id=info:pmid/&rft_galeid=A695327625&rfr_iscdi=true |