Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure

The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2022-04, Vol.147 (7), p.4711-4729
Hauptverfasser: Subhani, Shaik, kumar, Rajendran Senthil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4729
container_issue 7
container_start_page 4711
container_title Journal of thermal analysis and calorimetry
container_volume 147
creator Subhani, Shaik
kumar, Rajendran Senthil
description The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0 0 , 30 0 , 45 0 , 60 0 , 70 0 and 90 0 . The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45 0 , because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45 0  = 10.58%.
doi_str_mv 10.1007/s10973-021-10829-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2634585171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695327625</galeid><sourcerecordid>A695327625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</originalsourceid><addsrcrecordid>eNp9UMtKBDEQHETB5w94CngezWOTSY6y-ALRg3rwFHqyHR2ZTTTJKP690RG8SR26aKqqm2qaQ0aPGaXdSWbUdKKlnLWMam5as9HsMKl1yw1Xm5WLyhWTdLvZzfmFUmoMZTvN4w2UKcFIljG8oytDDOQSoZD7BCF7TOQsPENwuMZQSPRkOSQ3jZDIbZ8LuBHJx1Ceh0Du3iZIWOVujHlKuN9seRgzHvzOvebh_Ox-edle315cLU-vWyekLm3fgetZT52EzjitVj1Kr1aAwvccei00KKo6BFhUCL8QUsgetPEMEbkUe83RnPua4tuEudiXOKVQT1quxEJqyTpWVcez6glGtEPwsSRwFStcDy4G9EPdnyojBe_UTyyfDS7FnBN6-5qGNaRPy6j97tzOndvauf3p3JpqErMpV3F4wvT3yz-uL7m1has</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634585171</pqid></control><display><type>article</type><title>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</title><source>SpringerLink Journals - AutoHoldings</source><creator>Subhani, Shaik ; kumar, Rajendran Senthil</creator><creatorcontrib>Subhani, Shaik ; kumar, Rajendran Senthil</creatorcontrib><description>The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0 0 , 30 0 , 45 0 , 60 0 , 70 0 and 90 0 . The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45 0 , because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45 0  = 10.58%.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-021-10829-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Barriers ; Boiler furnaces ; Boundary conditions ; Building design ; Chemistry ; Chemistry and Materials Science ; Convective heat transfer ; Electronic packaging ; Enclosures ; Energy storage ; Environmental engineering ; Force and energy ; Free convection ; Furnaces ; Heat storage ; Heat transfer ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Nuclear facilities ; Nuclear reactors ; Nuclear safety ; Physical Chemistry ; Polymer Sciences ; Thermal energy ; Thermophysical properties ; Vorticity ; Winglets ; Working fluids</subject><ispartof>Journal of thermal analysis and calorimetry, 2022-04, Vol.147 (7), p.4711-4729</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</citedby><cites>FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</cites><orcidid>0000-0001-8327-1815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-021-10829-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-021-10829-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Subhani, Shaik</creatorcontrib><creatorcontrib>kumar, Rajendran Senthil</creatorcontrib><title>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0 0 , 30 0 , 45 0 , 60 0 , 70 0 and 90 0 . The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45 0 , because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45 0  = 10.58%.</description><subject>Analytical Chemistry</subject><subject>Barriers</subject><subject>Boiler furnaces</subject><subject>Boundary conditions</subject><subject>Building design</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Convective heat transfer</subject><subject>Electronic packaging</subject><subject>Enclosures</subject><subject>Energy storage</subject><subject>Environmental engineering</subject><subject>Force and energy</subject><subject>Free convection</subject><subject>Furnaces</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear facilities</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Thermal energy</subject><subject>Thermophysical properties</subject><subject>Vorticity</subject><subject>Winglets</subject><subject>Working fluids</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQHETB5w94CngezWOTSY6y-ALRg3rwFHqyHR2ZTTTJKP690RG8SR26aKqqm2qaQ0aPGaXdSWbUdKKlnLWMam5as9HsMKl1yw1Xm5WLyhWTdLvZzfmFUmoMZTvN4w2UKcFIljG8oytDDOQSoZD7BCF7TOQsPENwuMZQSPRkOSQ3jZDIbZ8LuBHJx1Ceh0Du3iZIWOVujHlKuN9seRgzHvzOvebh_Ox-edle315cLU-vWyekLm3fgetZT52EzjitVj1Kr1aAwvccei00KKo6BFhUCL8QUsgetPEMEbkUe83RnPua4tuEudiXOKVQT1quxEJqyTpWVcez6glGtEPwsSRwFStcDy4G9EPdnyojBe_UTyyfDS7FnBN6-5qGNaRPy6j97tzOndvauf3p3JpqErMpV3F4wvT3yz-uL7m1has</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Subhani, Shaik</creator><creator>kumar, Rajendran Senthil</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8327-1815</orcidid></search><sort><creationdate>20220401</creationdate><title>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</title><author>Subhani, Shaik ; kumar, Rajendran Senthil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b7acb1b0c5a79c86dbe5f6dae3fb2ab838a6067eaa4a4a3f43535ba89f1eee253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Barriers</topic><topic>Boiler furnaces</topic><topic>Boundary conditions</topic><topic>Building design</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Convective heat transfer</topic><topic>Electronic packaging</topic><topic>Enclosures</topic><topic>Energy storage</topic><topic>Environmental engineering</topic><topic>Force and energy</topic><topic>Free convection</topic><topic>Furnaces</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear facilities</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Thermal energy</topic><topic>Thermophysical properties</topic><topic>Vorticity</topic><topic>Winglets</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Subhani, Shaik</creatorcontrib><creatorcontrib>kumar, Rajendran Senthil</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Subhani, Shaik</au><au>kumar, Rajendran Senthil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>147</volume><issue>7</issue><spage>4711</spage><epage>4729</epage><pages>4711-4729</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The natural convection heat transfer within the enclosure is a classical problem by highlighting the real field applications such as electronic packaging industry, PCR-chips for DNA amplification, energy-efficient design of buildings rooms, operation and safety of nuclear reactors, convective heat transfer within boilers, furnaces and solar systems and thermal energy storage. Hence, the present study numerically investigates the flow and heat transfer characteristics within the square enclosure having the heated circular obstacle at the middle with an air of constant thermophysical properties is considered as working fluid. Also, the study continues after introducing winglets at different angles, i.e. 0 0 , 30 0 , 45 0 , 60 0 , 70 0 and 90 0 . The detailed hydrodynamic and thermal boundary conditions that are required considered and mentioned. The influence of circular obstacle with and without winglets has been reported by comparing velocity and vorticity magnitude also estimating natural convection heat transfer from obstacles. The heat transfer of the enclosure is maximum when the winglet is placed at 45 0 , because of the flow confinement provided and also allowing the fluid to interact more with the hot obstacle and carries more heat. In highest Rayleigh number, the following heat transfer enhancement has been achieved, circle-circle with winglet @ 45 0  = 10.58%.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-021-10829-9</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8327-1815</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2022-04, Vol.147 (7), p.4711-4729
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2634585171
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Barriers
Boiler furnaces
Boundary conditions
Building design
Chemistry
Chemistry and Materials Science
Convective heat transfer
Electronic packaging
Enclosures
Energy storage
Environmental engineering
Force and energy
Free convection
Furnaces
Heat storage
Heat transfer
Inorganic Chemistry
Measurement Science and Instrumentation
Nuclear facilities
Nuclear reactors
Nuclear safety
Physical Chemistry
Polymer Sciences
Thermal energy
Thermophysical properties
Vorticity
Winglets
Working fluids
title Natural Convection Heat Transfer Enhancement of Circular Obstacle within Square Enclosure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Natural%20Convection%20Heat%20Transfer%20Enhancement%20of%20Circular%20Obstacle%20within%20Square%20Enclosure&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Subhani,%20Shaik&rft.date=2022-04-01&rft.volume=147&rft.issue=7&rft.spage=4711&rft.epage=4729&rft.pages=4711-4729&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-021-10829-9&rft_dat=%3Cgale_proqu%3EA695327625%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634585171&rft_id=info:pmid/&rft_galeid=A695327625&rfr_iscdi=true