Orthogonality of Redesigned tRNA Molecules with Three Stop Codons
Comprehensive Summary The ability to expand genetic code in living cells has emerged as a powerful method with diverse applications. Here, we design replacement of the anticodons of E. coli tRNAs that recognize codons for 20 natural amino acids, with three anti‐stop codons, resulting in a total of 6...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemistry 2022-04, Vol.40 (7), p.825-831 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 7 |
container_start_page | 825 |
container_title | Chinese journal of chemistry |
container_volume | 40 |
creator | Zhang, Zhao‐Yang Liao, Dan‐Ni Ma, Yu‐Xin Jia, Bin Yuan, Ying‐Jin |
description | Comprehensive Summary
The ability to expand genetic code in living cells has emerged as a powerful method with diverse applications. Here, we design replacement of the anticodons of E. coli tRNAs that recognize codons for 20 natural amino acids, with three anti‐stop codons, resulting in a total of 60 engineered tRNA constructs. We test these constructs one by one in E. coli, and found that six tRNAsCUA (tyrV, serX, hisR, trpT, glnV and leuX), two tRNAsUCA (trpT and leuX) and one tRNAUUA (tyrV) allowed efficient expression of Red Fluorescence Protein (RFP) with the presence of a corresponding stop codon in frame. Furthermore, we exploit the mutual orthogonality of tRNASerCUA, tRNATrpUCA and tRNATyrUUA with corresponding stop codons and demonstrated that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk. Finally, we show the TAG and TGA can not only be used as an “AND gate” circuit to control the translation of target gene, but also be used to control the translation of a prodeoxyviolacein (PDV) pathway and a reporter in parallel. Overall, this work provides flexible tools for translational control and holds great potential to promote synthetic biology studies.
This study revealed the ability of stop codons to participate in encoding natural amino acids, and proved that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk by orthogonal test. We demonstrated that mutually orthogonal nonsense suppressor tRNA‐stop codon pairs can be used to not only control single gene expression in series, but also control two genetic functional units in parallel. Overall, this work provides useful tools with minimal size for translational control and holds great potential to promote synthetic biology studies. |
doi_str_mv | 10.1002/cjoc.202100759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634418826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634418826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-169f0c695730ad0e21b554cccc3f019794f86c464c7d9ac0cacd331fc1fb54483</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKtXzwHPWyebr82xLH5SLdQK3sI2m7Rb1qYmu5T-96ZU9Ohc3gy8Nzx-CF0TGBGA_NasvRnlkKdDcnWCBkQQlkkQ_DTtACQTwD7O0UWM6-SXMhcDNJ6GbuWXflO1TbfH3uGZrW1slhtb4272OsYvvrWmb23Eu6Zb4fkqWIvfOr_Fpa_9Jl6iM1e10V796BC939_Ny8dsMn14KseTzFAuVUaEcmCE4pJCVYPNyYJzZtJQB0RJxVwhDBPMyFpVBkxlakqJM8QtOGMFHaKb499t8F-9jZ1e-z6k3lHngjJGiiLpEI2OLhN8jME6vQ3NZxX2moA-YNIHTPoXUwqoY2DXtHb_j1uXz9PyL_sNbZprHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634418826</pqid></control><display><type>article</type><title>Orthogonality of Redesigned tRNA Molecules with Three Stop Codons</title><source>Access via Wiley Online Library</source><creator>Zhang, Zhao‐Yang ; Liao, Dan‐Ni ; Ma, Yu‐Xin ; Jia, Bin ; Yuan, Ying‐Jin</creator><creatorcontrib>Zhang, Zhao‐Yang ; Liao, Dan‐Ni ; Ma, Yu‐Xin ; Jia, Bin ; Yuan, Ying‐Jin</creatorcontrib><description>Comprehensive Summary
The ability to expand genetic code in living cells has emerged as a powerful method with diverse applications. Here, we design replacement of the anticodons of E. coli tRNAs that recognize codons for 20 natural amino acids, with three anti‐stop codons, resulting in a total of 60 engineered tRNA constructs. We test these constructs one by one in E. coli, and found that six tRNAsCUA (tyrV, serX, hisR, trpT, glnV and leuX), two tRNAsUCA (trpT and leuX) and one tRNAUUA (tyrV) allowed efficient expression of Red Fluorescence Protein (RFP) with the presence of a corresponding stop codon in frame. Furthermore, we exploit the mutual orthogonality of tRNASerCUA, tRNATrpUCA and tRNATyrUUA with corresponding stop codons and demonstrated that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk. Finally, we show the TAG and TGA can not only be used as an “AND gate” circuit to control the translation of target gene, but also be used to control the translation of a prodeoxyviolacein (PDV) pathway and a reporter in parallel. Overall, this work provides flexible tools for translational control and holds great potential to promote synthetic biology studies.
This study revealed the ability of stop codons to participate in encoding natural amino acids, and proved that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk by orthogonal test. We demonstrated that mutually orthogonal nonsense suppressor tRNA‐stop codon pairs can be used to not only control single gene expression in series, but also control two genetic functional units in parallel. Overall, this work provides useful tools with minimal size for translational control and holds great potential to promote synthetic biology studies.</description><identifier>ISSN: 1001-604X</identifier><identifier>EISSN: 1614-7065</identifier><identifier>DOI: 10.1002/cjoc.202100759</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Amino acids ; Anticodons ; Biosynthesis ; Circuits ; Codons ; Crosstalk ; E coli ; Fluorescence ; Genetic code ; Orthogonality ; Parallel control ; Series control ; Stop codon ; Synthetic biology ; Transfer RNA ; Translation ; tRNA</subject><ispartof>Chinese journal of chemistry, 2022-04, Vol.40 (7), p.825-831</ispartof><rights>2021 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH</rights><rights>2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-169f0c695730ad0e21b554cccc3f019794f86c464c7d9ac0cacd331fc1fb54483</citedby><cites>FETCH-LOGICAL-c3579-169f0c695730ad0e21b554cccc3f019794f86c464c7d9ac0cacd331fc1fb54483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjoc.202100759$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjoc.202100759$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Zhao‐Yang</creatorcontrib><creatorcontrib>Liao, Dan‐Ni</creatorcontrib><creatorcontrib>Ma, Yu‐Xin</creatorcontrib><creatorcontrib>Jia, Bin</creatorcontrib><creatorcontrib>Yuan, Ying‐Jin</creatorcontrib><title>Orthogonality of Redesigned tRNA Molecules with Three Stop Codons</title><title>Chinese journal of chemistry</title><description>Comprehensive Summary
The ability to expand genetic code in living cells has emerged as a powerful method with diverse applications. Here, we design replacement of the anticodons of E. coli tRNAs that recognize codons for 20 natural amino acids, with three anti‐stop codons, resulting in a total of 60 engineered tRNA constructs. We test these constructs one by one in E. coli, and found that six tRNAsCUA (tyrV, serX, hisR, trpT, glnV and leuX), two tRNAsUCA (trpT and leuX) and one tRNAUUA (tyrV) allowed efficient expression of Red Fluorescence Protein (RFP) with the presence of a corresponding stop codon in frame. Furthermore, we exploit the mutual orthogonality of tRNASerCUA, tRNATrpUCA and tRNATyrUUA with corresponding stop codons and demonstrated that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk. Finally, we show the TAG and TGA can not only be used as an “AND gate” circuit to control the translation of target gene, but also be used to control the translation of a prodeoxyviolacein (PDV) pathway and a reporter in parallel. Overall, this work provides flexible tools for translational control and holds great potential to promote synthetic biology studies.
This study revealed the ability of stop codons to participate in encoding natural amino acids, and proved that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk by orthogonal test. We demonstrated that mutually orthogonal nonsense suppressor tRNA‐stop codon pairs can be used to not only control single gene expression in series, but also control two genetic functional units in parallel. Overall, this work provides useful tools with minimal size for translational control and holds great potential to promote synthetic biology studies.</description><subject>Amino acids</subject><subject>Anticodons</subject><subject>Biosynthesis</subject><subject>Circuits</subject><subject>Codons</subject><subject>Crosstalk</subject><subject>E coli</subject><subject>Fluorescence</subject><subject>Genetic code</subject><subject>Orthogonality</subject><subject>Parallel control</subject><subject>Series control</subject><subject>Stop codon</subject><subject>Synthetic biology</subject><subject>Transfer RNA</subject><subject>Translation</subject><subject>tRNA</subject><issn>1001-604X</issn><issn>1614-7065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1LAzEQxYMoWKtXzwHPWyebr82xLH5SLdQK3sI2m7Rb1qYmu5T-96ZU9Ohc3gy8Nzx-CF0TGBGA_NasvRnlkKdDcnWCBkQQlkkQ_DTtACQTwD7O0UWM6-SXMhcDNJ6GbuWXflO1TbfH3uGZrW1slhtb4272OsYvvrWmb23Eu6Zb4fkqWIvfOr_Fpa_9Jl6iM1e10V796BC939_Ny8dsMn14KseTzFAuVUaEcmCE4pJCVYPNyYJzZtJQB0RJxVwhDBPMyFpVBkxlakqJM8QtOGMFHaKb499t8F-9jZ1e-z6k3lHngjJGiiLpEI2OLhN8jME6vQ3NZxX2moA-YNIHTPoXUwqoY2DXtHb_j1uXz9PyL_sNbZprHw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhang, Zhao‐Yang</creator><creator>Liao, Dan‐Ni</creator><creator>Ma, Yu‐Xin</creator><creator>Jia, Bin</creator><creator>Yuan, Ying‐Jin</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220401</creationdate><title>Orthogonality of Redesigned tRNA Molecules with Three Stop Codons</title><author>Zhang, Zhao‐Yang ; Liao, Dan‐Ni ; Ma, Yu‐Xin ; Jia, Bin ; Yuan, Ying‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-169f0c695730ad0e21b554cccc3f019794f86c464c7d9ac0cacd331fc1fb54483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Anticodons</topic><topic>Biosynthesis</topic><topic>Circuits</topic><topic>Codons</topic><topic>Crosstalk</topic><topic>E coli</topic><topic>Fluorescence</topic><topic>Genetic code</topic><topic>Orthogonality</topic><topic>Parallel control</topic><topic>Series control</topic><topic>Stop codon</topic><topic>Synthetic biology</topic><topic>Transfer RNA</topic><topic>Translation</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhao‐Yang</creatorcontrib><creatorcontrib>Liao, Dan‐Ni</creatorcontrib><creatorcontrib>Ma, Yu‐Xin</creatorcontrib><creatorcontrib>Jia, Bin</creatorcontrib><creatorcontrib>Yuan, Ying‐Jin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Chinese journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhao‐Yang</au><au>Liao, Dan‐Ni</au><au>Ma, Yu‐Xin</au><au>Jia, Bin</au><au>Yuan, Ying‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonality of Redesigned tRNA Molecules with Three Stop Codons</atitle><jtitle>Chinese journal of chemistry</jtitle><date>2022-04-01</date><risdate>2022</risdate><volume>40</volume><issue>7</issue><spage>825</spage><epage>831</epage><pages>825-831</pages><issn>1001-604X</issn><eissn>1614-7065</eissn><abstract>Comprehensive Summary
The ability to expand genetic code in living cells has emerged as a powerful method with diverse applications. Here, we design replacement of the anticodons of E. coli tRNAs that recognize codons for 20 natural amino acids, with three anti‐stop codons, resulting in a total of 60 engineered tRNA constructs. We test these constructs one by one in E. coli, and found that six tRNAsCUA (tyrV, serX, hisR, trpT, glnV and leuX), two tRNAsUCA (trpT and leuX) and one tRNAUUA (tyrV) allowed efficient expression of Red Fluorescence Protein (RFP) with the presence of a corresponding stop codon in frame. Furthermore, we exploit the mutual orthogonality of tRNASerCUA, tRNATrpUCA and tRNATyrUUA with corresponding stop codons and demonstrated that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk. Finally, we show the TAG and TGA can not only be used as an “AND gate” circuit to control the translation of target gene, but also be used to control the translation of a prodeoxyviolacein (PDV) pathway and a reporter in parallel. Overall, this work provides flexible tools for translational control and holds great potential to promote synthetic biology studies.
This study revealed the ability of stop codons to participate in encoding natural amino acids, and proved that the tRNASerCUA and the tRNATrpUCA can provide dynamic range and low crosstalk by orthogonal test. We demonstrated that mutually orthogonal nonsense suppressor tRNA‐stop codon pairs can be used to not only control single gene expression in series, but also control two genetic functional units in parallel. Overall, this work provides useful tools with minimal size for translational control and holds great potential to promote synthetic biology studies.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/cjoc.202100759</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-604X |
ispartof | Chinese journal of chemistry, 2022-04, Vol.40 (7), p.825-831 |
issn | 1001-604X 1614-7065 |
language | eng |
recordid | cdi_proquest_journals_2634418826 |
source | Access via Wiley Online Library |
subjects | Amino acids Anticodons Biosynthesis Circuits Codons Crosstalk E coli Fluorescence Genetic code Orthogonality Parallel control Series control Stop codon Synthetic biology Transfer RNA Translation tRNA |
title | Orthogonality of Redesigned tRNA Molecules with Three Stop Codons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonality%20of%20Redesigned%20tRNA%20Molecules%20with%20Three%20Stop%20Codons&rft.jtitle=Chinese%20journal%20of%20chemistry&rft.au=Zhang,%20Zhao%E2%80%90Yang&rft.date=2022-04-01&rft.volume=40&rft.issue=7&rft.spage=825&rft.epage=831&rft.pages=825-831&rft.issn=1001-604X&rft.eissn=1614-7065&rft_id=info:doi/10.1002/cjoc.202100759&rft_dat=%3Cproquest_cross%3E2634418826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634418826&rft_id=info:pmid/&rfr_iscdi=true |