Intelligent control method of underwater inspection robot in netcage
The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neura...
Gespeichert in:
Veröffentlicht in: | Aquaculture research 2022-04, Vol.53 (5), p.1928-1938 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1938 |
---|---|
container_issue | 5 |
container_start_page | 1928 |
container_title | Aquaculture research |
container_volume | 53 |
creator | Wu, Yinghao Liu, Jincun Wei, Yaoguang An, Dong Duan, Yunhong Li, Wensheng Li, Baoke Chen, Yuanrong Wei, Qiong |
description | The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves |
doi_str_mv | 10.1111/are.15721 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634300116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634300116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtM_nYdY-lVi0UBFHwFrK7s3XLNqlJSum_N3W9OpcZhmdm3nkJuQU2gRRT43ECquBwRkYgcpVxYOX5qVYqU6r4vCRXIWwYA8kEjMjj0kbs-26NNtLa2ehdT7cYv1xDXUv3tkF_MBE97WzYYR07Z6l3lYupQS3G2qzxmly0pg9485fH5ONp8T5_yVavz8v5bJXVQnDIOANRyaIxjcpLAUZwVsmmalkpCsN5ks-5rMpatAqVwryB9kHw3BR5Ui8lF2NyN-zdefe9xxD1xu29TSc1z4UU6SvIE3U_ULV3IXhs9c53W-OPGpg-maSTSfrXpMROB_bQ9Xj8H9Szt8Uw8QMzmWcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634300116</pqid></control><display><type>article</type><title>Intelligent control method of underwater inspection robot in netcage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Yinghao ; Liu, Jincun ; Wei, Yaoguang ; An, Dong ; Duan, Yunhong ; Li, Wensheng ; Li, Baoke ; Chen, Yuanrong ; Wei, Qiong</creator><creatorcontrib>Wu, Yinghao ; Liu, Jincun ; Wei, Yaoguang ; An, Dong ; Duan, Yunhong ; Li, Wensheng ; Li, Baoke ; Chen, Yuanrong ; Wei, Qiong</creatorcontrib><description>The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves <0.5 m, the average tracking error of ROV is <0.5 m, the fluctuation of roll angle and pitch angle is <6°, the average distance error from ROV to mesh netcage is about 0.2 m, and the underwater netcage inspection task is completed stably. [Video attachment: https://youtu.be/NKcgPcej5sI].</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15721</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Algorithms ; Azimuth ; Control methods ; Divers ; Feedforward control ; global path tracking ; Hybrid control ; Inspection ; local path planning ; netcage inspection ; Neural networks ; Path planning ; path smoothing ; Path tracking ; Pitch (inclination) ; remotely operated vehicle ; Remotely operated vehicles ; Robot dynamics ; Robots ; Rolling motion ; Service life ; Shoots ; Tracking errors ; Tracks (paths) ; Underwater ; Underwater inspection ; Underwater robots ; Underwater vehicles ; Unmanned vehicles ; Vibration</subject><ispartof>Aquaculture research, 2022-04, Vol.53 (5), p.1928-1938</ispartof><rights>2021 John Wiley & Sons Ltd</rights><rights>Copyright © 2022 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</citedby><cites>FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</cites><orcidid>0000-0001-6011-3611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wu, Yinghao</creatorcontrib><creatorcontrib>Liu, Jincun</creatorcontrib><creatorcontrib>Wei, Yaoguang</creatorcontrib><creatorcontrib>An, Dong</creatorcontrib><creatorcontrib>Duan, Yunhong</creatorcontrib><creatorcontrib>Li, Wensheng</creatorcontrib><creatorcontrib>Li, Baoke</creatorcontrib><creatorcontrib>Chen, Yuanrong</creatorcontrib><creatorcontrib>Wei, Qiong</creatorcontrib><title>Intelligent control method of underwater inspection robot in netcage</title><title>Aquaculture research</title><description>The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves <0.5 m, the average tracking error of ROV is <0.5 m, the fluctuation of roll angle and pitch angle is <6°, the average distance error from ROV to mesh netcage is about 0.2 m, and the underwater netcage inspection task is completed stably. [Video attachment: https://youtu.be/NKcgPcej5sI].</description><subject>Algorithms</subject><subject>Azimuth</subject><subject>Control methods</subject><subject>Divers</subject><subject>Feedforward control</subject><subject>global path tracking</subject><subject>Hybrid control</subject><subject>Inspection</subject><subject>local path planning</subject><subject>netcage inspection</subject><subject>Neural networks</subject><subject>Path planning</subject><subject>path smoothing</subject><subject>Path tracking</subject><subject>Pitch (inclination)</subject><subject>remotely operated vehicle</subject><subject>Remotely operated vehicles</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Rolling motion</subject><subject>Service life</subject><subject>Shoots</subject><subject>Tracking errors</subject><subject>Tracks (paths)</subject><subject>Underwater</subject><subject>Underwater inspection</subject><subject>Underwater robots</subject><subject>Underwater vehicles</subject><subject>Unmanned vehicles</subject><subject>Vibration</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtM_nYdY-lVi0UBFHwFrK7s3XLNqlJSum_N3W9OpcZhmdm3nkJuQU2gRRT43ECquBwRkYgcpVxYOX5qVYqU6r4vCRXIWwYA8kEjMjj0kbs-26NNtLa2ehdT7cYv1xDXUv3tkF_MBE97WzYYR07Z6l3lYupQS3G2qzxmly0pg9485fH5ONp8T5_yVavz8v5bJXVQnDIOANRyaIxjcpLAUZwVsmmalkpCsN5ks-5rMpatAqVwryB9kHw3BR5Ui8lF2NyN-zdefe9xxD1xu29TSc1z4UU6SvIE3U_ULV3IXhs9c53W-OPGpg-maSTSfrXpMROB_bQ9Xj8H9Szt8Uw8QMzmWcI</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Wu, Yinghao</creator><creator>Liu, Jincun</creator><creator>Wei, Yaoguang</creator><creator>An, Dong</creator><creator>Duan, Yunhong</creator><creator>Li, Wensheng</creator><creator>Li, Baoke</creator><creator>Chen, Yuanrong</creator><creator>Wei, Qiong</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6011-3611</orcidid></search><sort><creationdate>202204</creationdate><title>Intelligent control method of underwater inspection robot in netcage</title><author>Wu, Yinghao ; Liu, Jincun ; Wei, Yaoguang ; An, Dong ; Duan, Yunhong ; Li, Wensheng ; Li, Baoke ; Chen, Yuanrong ; Wei, Qiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Azimuth</topic><topic>Control methods</topic><topic>Divers</topic><topic>Feedforward control</topic><topic>global path tracking</topic><topic>Hybrid control</topic><topic>Inspection</topic><topic>local path planning</topic><topic>netcage inspection</topic><topic>Neural networks</topic><topic>Path planning</topic><topic>path smoothing</topic><topic>Path tracking</topic><topic>Pitch (inclination)</topic><topic>remotely operated vehicle</topic><topic>Remotely operated vehicles</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Rolling motion</topic><topic>Service life</topic><topic>Shoots</topic><topic>Tracking errors</topic><topic>Tracks (paths)</topic><topic>Underwater</topic><topic>Underwater inspection</topic><topic>Underwater robots</topic><topic>Underwater vehicles</topic><topic>Unmanned vehicles</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yinghao</creatorcontrib><creatorcontrib>Liu, Jincun</creatorcontrib><creatorcontrib>Wei, Yaoguang</creatorcontrib><creatorcontrib>An, Dong</creatorcontrib><creatorcontrib>Duan, Yunhong</creatorcontrib><creatorcontrib>Li, Wensheng</creatorcontrib><creatorcontrib>Li, Baoke</creatorcontrib><creatorcontrib>Chen, Yuanrong</creatorcontrib><creatorcontrib>Wei, Qiong</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yinghao</au><au>Liu, Jincun</au><au>Wei, Yaoguang</au><au>An, Dong</au><au>Duan, Yunhong</au><au>Li, Wensheng</au><au>Li, Baoke</au><au>Chen, Yuanrong</au><au>Wei, Qiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent control method of underwater inspection robot in netcage</atitle><jtitle>Aquaculture research</jtitle><date>2022-04</date><risdate>2022</risdate><volume>53</volume><issue>5</issue><spage>1928</spage><epage>1938</epage><pages>1928-1938</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves <0.5 m, the average tracking error of ROV is <0.5 m, the fluctuation of roll angle and pitch angle is <6°, the average distance error from ROV to mesh netcage is about 0.2 m, and the underwater netcage inspection task is completed stably. [Video attachment: https://youtu.be/NKcgPcej5sI].</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15721</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6011-3611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-557X |
ispartof | Aquaculture research, 2022-04, Vol.53 (5), p.1928-1938 |
issn | 1355-557X 1365-2109 |
language | eng |
recordid | cdi_proquest_journals_2634300116 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Azimuth Control methods Divers Feedforward control global path tracking Hybrid control Inspection local path planning netcage inspection Neural networks Path planning path smoothing Path tracking Pitch (inclination) remotely operated vehicle Remotely operated vehicles Robot dynamics Robots Rolling motion Service life Shoots Tracking errors Tracks (paths) Underwater Underwater inspection Underwater robots Underwater vehicles Unmanned vehicles Vibration |
title | Intelligent control method of underwater inspection robot in netcage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20control%20method%20of%20underwater%20inspection%20robot%20in%20netcage&rft.jtitle=Aquaculture%20research&rft.au=Wu,%20Yinghao&rft.date=2022-04&rft.volume=53&rft.issue=5&rft.spage=1928&rft.epage=1938&rft.pages=1928-1938&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15721&rft_dat=%3Cproquest_cross%3E2634300116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634300116&rft_id=info:pmid/&rfr_iscdi=true |