Intelligent control method of underwater inspection robot in netcage

The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2022-04, Vol.53 (5), p.1928-1938
Hauptverfasser: Wu, Yinghao, Liu, Jincun, Wei, Yaoguang, An, Dong, Duan, Yunhong, Li, Wensheng, Li, Baoke, Chen, Yuanrong, Wei, Qiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1938
container_issue 5
container_start_page 1928
container_title Aquaculture research
container_volume 53
creator Wu, Yinghao
Liu, Jincun
Wei, Yaoguang
An, Dong
Duan, Yunhong
Li, Wensheng
Li, Baoke
Chen, Yuanrong
Wei, Qiong
description The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves
doi_str_mv 10.1111/are.15721
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634300116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634300116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtM_nYdY-lVi0UBFHwFrK7s3XLNqlJSum_N3W9OpcZhmdm3nkJuQU2gRRT43ECquBwRkYgcpVxYOX5qVYqU6r4vCRXIWwYA8kEjMjj0kbs-26NNtLa2ehdT7cYv1xDXUv3tkF_MBE97WzYYR07Z6l3lYupQS3G2qzxmly0pg9485fH5ONp8T5_yVavz8v5bJXVQnDIOANRyaIxjcpLAUZwVsmmalkpCsN5ks-5rMpatAqVwryB9kHw3BR5Ui8lF2NyN-zdefe9xxD1xu29TSc1z4UU6SvIE3U_ULV3IXhs9c53W-OPGpg-maSTSfrXpMROB_bQ9Xj8H9Szt8Uw8QMzmWcI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634300116</pqid></control><display><type>article</type><title>Intelligent control method of underwater inspection robot in netcage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Yinghao ; Liu, Jincun ; Wei, Yaoguang ; An, Dong ; Duan, Yunhong ; Li, Wensheng ; Li, Baoke ; Chen, Yuanrong ; Wei, Qiong</creator><creatorcontrib>Wu, Yinghao ; Liu, Jincun ; Wei, Yaoguang ; An, Dong ; Duan, Yunhong ; Li, Wensheng ; Li, Baoke ; Chen, Yuanrong ; Wei, Qiong</creatorcontrib><description>The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves &lt;0.5 m, the average tracking error of ROV is &lt;0.5 m, the fluctuation of roll angle and pitch angle is &lt;6°, the average distance error from ROV to mesh netcage is about 0.2 m, and the underwater netcage inspection task is completed stably. [Video attachment: https://youtu.be/NKcgPcej5sI].</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.15721</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Algorithms ; Azimuth ; Control methods ; Divers ; Feedforward control ; global path tracking ; Hybrid control ; Inspection ; local path planning ; netcage inspection ; Neural networks ; Path planning ; path smoothing ; Path tracking ; Pitch (inclination) ; remotely operated vehicle ; Remotely operated vehicles ; Robot dynamics ; Robots ; Rolling motion ; Service life ; Shoots ; Tracking errors ; Tracks (paths) ; Underwater ; Underwater inspection ; Underwater robots ; Underwater vehicles ; Unmanned vehicles ; Vibration</subject><ispartof>Aquaculture research, 2022-04, Vol.53 (5), p.1928-1938</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2022 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</citedby><cites>FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</cites><orcidid>0000-0001-6011-3611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.15721$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.15721$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wu, Yinghao</creatorcontrib><creatorcontrib>Liu, Jincun</creatorcontrib><creatorcontrib>Wei, Yaoguang</creatorcontrib><creatorcontrib>An, Dong</creatorcontrib><creatorcontrib>Duan, Yunhong</creatorcontrib><creatorcontrib>Li, Wensheng</creatorcontrib><creatorcontrib>Li, Baoke</creatorcontrib><creatorcontrib>Chen, Yuanrong</creatorcontrib><creatorcontrib>Wei, Qiong</creatorcontrib><title>Intelligent control method of underwater inspection robot in netcage</title><title>Aquaculture research</title><description>The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves &lt;0.5 m, the average tracking error of ROV is &lt;0.5 m, the fluctuation of roll angle and pitch angle is &lt;6°, the average distance error from ROV to mesh netcage is about 0.2 m, and the underwater netcage inspection task is completed stably. [Video attachment: https://youtu.be/NKcgPcej5sI].</description><subject>Algorithms</subject><subject>Azimuth</subject><subject>Control methods</subject><subject>Divers</subject><subject>Feedforward control</subject><subject>global path tracking</subject><subject>Hybrid control</subject><subject>Inspection</subject><subject>local path planning</subject><subject>netcage inspection</subject><subject>Neural networks</subject><subject>Path planning</subject><subject>path smoothing</subject><subject>Path tracking</subject><subject>Pitch (inclination)</subject><subject>remotely operated vehicle</subject><subject>Remotely operated vehicles</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>Rolling motion</subject><subject>Service life</subject><subject>Shoots</subject><subject>Tracking errors</subject><subject>Tracks (paths)</subject><subject>Underwater</subject><subject>Underwater inspection</subject><subject>Underwater robots</subject><subject>Underwater vehicles</subject><subject>Unmanned vehicles</subject><subject>Vibration</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtM_nYdY-lVi0UBFHwFrK7s3XLNqlJSum_N3W9OpcZhmdm3nkJuQU2gRRT43ECquBwRkYgcpVxYOX5qVYqU6r4vCRXIWwYA8kEjMjj0kbs-26NNtLa2ehdT7cYv1xDXUv3tkF_MBE97WzYYR07Z6l3lYupQS3G2qzxmly0pg9485fH5ONp8T5_yVavz8v5bJXVQnDIOANRyaIxjcpLAUZwVsmmalkpCsN5ks-5rMpatAqVwryB9kHw3BR5Ui8lF2NyN-zdefe9xxD1xu29TSc1z4UU6SvIE3U_ULV3IXhs9c53W-OPGpg-maSTSfrXpMROB_bQ9Xj8H9Szt8Uw8QMzmWcI</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Wu, Yinghao</creator><creator>Liu, Jincun</creator><creator>Wei, Yaoguang</creator><creator>An, Dong</creator><creator>Duan, Yunhong</creator><creator>Li, Wensheng</creator><creator>Li, Baoke</creator><creator>Chen, Yuanrong</creator><creator>Wei, Qiong</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6011-3611</orcidid></search><sort><creationdate>202204</creationdate><title>Intelligent control method of underwater inspection robot in netcage</title><author>Wu, Yinghao ; Liu, Jincun ; Wei, Yaoguang ; An, Dong ; Duan, Yunhong ; Li, Wensheng ; Li, Baoke ; Chen, Yuanrong ; Wei, Qiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3321-2013b47dad56931a320b4dbf0937a22111224b9c3f5e55e6d1f8326a761354423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Azimuth</topic><topic>Control methods</topic><topic>Divers</topic><topic>Feedforward control</topic><topic>global path tracking</topic><topic>Hybrid control</topic><topic>Inspection</topic><topic>local path planning</topic><topic>netcage inspection</topic><topic>Neural networks</topic><topic>Path planning</topic><topic>path smoothing</topic><topic>Path tracking</topic><topic>Pitch (inclination)</topic><topic>remotely operated vehicle</topic><topic>Remotely operated vehicles</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>Rolling motion</topic><topic>Service life</topic><topic>Shoots</topic><topic>Tracking errors</topic><topic>Tracks (paths)</topic><topic>Underwater</topic><topic>Underwater inspection</topic><topic>Underwater robots</topic><topic>Underwater vehicles</topic><topic>Unmanned vehicles</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yinghao</creatorcontrib><creatorcontrib>Liu, Jincun</creatorcontrib><creatorcontrib>Wei, Yaoguang</creatorcontrib><creatorcontrib>An, Dong</creatorcontrib><creatorcontrib>Duan, Yunhong</creatorcontrib><creatorcontrib>Li, Wensheng</creatorcontrib><creatorcontrib>Li, Baoke</creatorcontrib><creatorcontrib>Chen, Yuanrong</creatorcontrib><creatorcontrib>Wei, Qiong</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yinghao</au><au>Liu, Jincun</au><au>Wei, Yaoguang</au><au>An, Dong</au><au>Duan, Yunhong</au><au>Li, Wensheng</au><au>Li, Baoke</au><au>Chen, Yuanrong</au><au>Wei, Qiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent control method of underwater inspection robot in netcage</atitle><jtitle>Aquaculture research</jtitle><date>2022-04</date><risdate>2022</risdate><volume>53</volume><issue>5</issue><spage>1928</spage><epage>1938</epage><pages>1928-1938</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>The traditional netcage inspection requires divers to complete, which is inefficient and dangerous. The underwater robot inspection is a way to solve the problem. When the robot is in motion, the camera shoots the netcage, replacing the manual inspection. A new hybrid control strategy based on neural network (NN) and proportional integral differential (PID) is proposed for underwater three‐dimensional path tracking, which overcomes the defect that the traditional feedback regulation can only work after the occurrence of deviation. A feedforward controller based on neural network is designed to predict the disturbance of the controlled object and enhance the anti‐interference ability of the system. Firstly, implement global path tracking based on azimuth and course. Then when the remotely operated vehicle (ROV) deviates from the path, local path planning with rapidly‐exploring random trees (RRT) algorithm. ROV tracks local path and returns to the global path. Finally, using the moving average (MA) algorithm of RRT path smoothing, a smooth path is obtained to minimize ROV jitter, which ensures that the ROV can clearly take pictures of the netcage, and the service life of the ROV is extended. ROV can replace manual inspection, and it only takes about 30 min to rotate a circle, greatly improving work efficiency. The control approach was tested underwater at different depth path tracking scenarios. The experimental results show that in the case of waves &lt;0.5 m, the average tracking error of ROV is &lt;0.5 m, the fluctuation of roll angle and pitch angle is &lt;6°, the average distance error from ROV to mesh netcage is about 0.2 m, and the underwater netcage inspection task is completed stably. [Video attachment: https://youtu.be/NKcgPcej5sI].</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.15721</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6011-3611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2022-04, Vol.53 (5), p.1928-1938
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_2634300116
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Azimuth
Control methods
Divers
Feedforward control
global path tracking
Hybrid control
Inspection
local path planning
netcage inspection
Neural networks
Path planning
path smoothing
Path tracking
Pitch (inclination)
remotely operated vehicle
Remotely operated vehicles
Robot dynamics
Robots
Rolling motion
Service life
Shoots
Tracking errors
Tracks (paths)
Underwater
Underwater inspection
Underwater robots
Underwater vehicles
Unmanned vehicles
Vibration
title Intelligent control method of underwater inspection robot in netcage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T19%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20control%20method%20of%20underwater%20inspection%20robot%20in%20netcage&rft.jtitle=Aquaculture%20research&rft.au=Wu,%20Yinghao&rft.date=2022-04&rft.volume=53&rft.issue=5&rft.spage=1928&rft.epage=1938&rft.pages=1928-1938&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.15721&rft_dat=%3Cproquest_cross%3E2634300116%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634300116&rft_id=info:pmid/&rfr_iscdi=true