Deep neural networks for fine-grained surveillance of overdose mortality
Surveillance of drug overdose deaths relies on death certificates for identification of the substances that caused death. Drugs and drug classes can be identified through the International Classification of Diseases, 10th Revision (ICD-10) codes present on death certificates. However, ICD-10 codes d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ward, Patrick J Young, April M Slavova, Svetla Madison Liford Daniels, Lara Ripley, Lucas Kavuluru, Ramakanth |
description | Surveillance of drug overdose deaths relies on death certificates for identification of the substances that caused death. Drugs and drug classes can be identified through the International Classification of Diseases, 10th Revision (ICD-10) codes present on death certificates. However, ICD-10 codes do not always provide high levels of specificity in drug identification. To achieve more fine-grained identification of substances on a death certificate, the free-text cause of death section, completed by the medical certifier, must be analyzed. Current methods for analyzing free-text death certificates rely solely on look-up tables for identifying specific substances, which must be frequently updated and maintained. To improve identification of drugs on death certificates, a deep learning named-entity recognition model was developed, which achieved an F1-score of 99.13%. This model can identify new drug misspellings and novel substances that are not present on current surveillance look-up tables, enhancing the surveillance of drug overdose deaths. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2634287921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634287921</sourcerecordid><originalsourceid>FETCH-proquest_journals_26342879213</originalsourceid><addsrcrecordid>eNqNyksKwjAQgOEgCBbtHQKuC-2kL9c-6AHcl2An0hozdZJWvL1deABX3-L_VyICpbKkzgE2IvZ-SNMUygqKQkWiOSGO0uHE2i6EN_HDS0MsTe8wubNe6KSfeMbeWu1uKMlImpE78iifxEHbPnx2Ym209Rj_3Ir95Xw9NsnI9JrQh3agid2SWihVDnV1gEz9d30BkyE8xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634287921</pqid></control><display><type>article</type><title>Deep neural networks for fine-grained surveillance of overdose mortality</title><source>Free E- Journals</source><creator>Ward, Patrick J ; Young, April M ; Slavova, Svetla ; Madison Liford ; Daniels, Lara ; Ripley, Lucas ; Kavuluru, Ramakanth</creator><creatorcontrib>Ward, Patrick J ; Young, April M ; Slavova, Svetla ; Madison Liford ; Daniels, Lara ; Ripley, Lucas ; Kavuluru, Ramakanth</creatorcontrib><description>Surveillance of drug overdose deaths relies on death certificates for identification of the substances that caused death. Drugs and drug classes can be identified through the International Classification of Diseases, 10th Revision (ICD-10) codes present on death certificates. However, ICD-10 codes do not always provide high levels of specificity in drug identification. To achieve more fine-grained identification of substances on a death certificate, the free-text cause of death section, completed by the medical certifier, must be analyzed. Current methods for analyzing free-text death certificates rely solely on look-up tables for identifying specific substances, which must be frequently updated and maintained. To improve identification of drugs on death certificates, a deep learning named-entity recognition model was developed, which achieved an F1-score of 99.13%. This model can identify new drug misspellings and novel substances that are not present on current surveillance look-up tables, enhancing the surveillance of drug overdose deaths.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Certificates ; Death ; Drug overdose ; Drugs ; Fatalities ; Lookup tables ; Machine learning ; Surveillance</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ward, Patrick J</creatorcontrib><creatorcontrib>Young, April M</creatorcontrib><creatorcontrib>Slavova, Svetla</creatorcontrib><creatorcontrib>Madison Liford</creatorcontrib><creatorcontrib>Daniels, Lara</creatorcontrib><creatorcontrib>Ripley, Lucas</creatorcontrib><creatorcontrib>Kavuluru, Ramakanth</creatorcontrib><title>Deep neural networks for fine-grained surveillance of overdose mortality</title><title>arXiv.org</title><description>Surveillance of drug overdose deaths relies on death certificates for identification of the substances that caused death. Drugs and drug classes can be identified through the International Classification of Diseases, 10th Revision (ICD-10) codes present on death certificates. However, ICD-10 codes do not always provide high levels of specificity in drug identification. To achieve more fine-grained identification of substances on a death certificate, the free-text cause of death section, completed by the medical certifier, must be analyzed. Current methods for analyzing free-text death certificates rely solely on look-up tables for identifying specific substances, which must be frequently updated and maintained. To improve identification of drugs on death certificates, a deep learning named-entity recognition model was developed, which achieved an F1-score of 99.13%. This model can identify new drug misspellings and novel substances that are not present on current surveillance look-up tables, enhancing the surveillance of drug overdose deaths.</description><subject>Artificial neural networks</subject><subject>Certificates</subject><subject>Death</subject><subject>Drug overdose</subject><subject>Drugs</subject><subject>Fatalities</subject><subject>Lookup tables</subject><subject>Machine learning</subject><subject>Surveillance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyksKwjAQgOEgCBbtHQKuC-2kL9c-6AHcl2An0hozdZJWvL1deABX3-L_VyICpbKkzgE2IvZ-SNMUygqKQkWiOSGO0uHE2i6EN_HDS0MsTe8wubNe6KSfeMbeWu1uKMlImpE78iifxEHbPnx2Ym209Rj_3Ir95Xw9NsnI9JrQh3agid2SWihVDnV1gEz9d30BkyE8xQ</recordid><startdate>20220606</startdate><enddate>20220606</enddate><creator>Ward, Patrick J</creator><creator>Young, April M</creator><creator>Slavova, Svetla</creator><creator>Madison Liford</creator><creator>Daniels, Lara</creator><creator>Ripley, Lucas</creator><creator>Kavuluru, Ramakanth</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220606</creationdate><title>Deep neural networks for fine-grained surveillance of overdose mortality</title><author>Ward, Patrick J ; Young, April M ; Slavova, Svetla ; Madison Liford ; Daniels, Lara ; Ripley, Lucas ; Kavuluru, Ramakanth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26342879213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Certificates</topic><topic>Death</topic><topic>Drug overdose</topic><topic>Drugs</topic><topic>Fatalities</topic><topic>Lookup tables</topic><topic>Machine learning</topic><topic>Surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Ward, Patrick J</creatorcontrib><creatorcontrib>Young, April M</creatorcontrib><creatorcontrib>Slavova, Svetla</creatorcontrib><creatorcontrib>Madison Liford</creatorcontrib><creatorcontrib>Daniels, Lara</creatorcontrib><creatorcontrib>Ripley, Lucas</creatorcontrib><creatorcontrib>Kavuluru, Ramakanth</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ward, Patrick J</au><au>Young, April M</au><au>Slavova, Svetla</au><au>Madison Liford</au><au>Daniels, Lara</au><au>Ripley, Lucas</au><au>Kavuluru, Ramakanth</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep neural networks for fine-grained surveillance of overdose mortality</atitle><jtitle>arXiv.org</jtitle><date>2022-06-06</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Surveillance of drug overdose deaths relies on death certificates for identification of the substances that caused death. Drugs and drug classes can be identified through the International Classification of Diseases, 10th Revision (ICD-10) codes present on death certificates. However, ICD-10 codes do not always provide high levels of specificity in drug identification. To achieve more fine-grained identification of substances on a death certificate, the free-text cause of death section, completed by the medical certifier, must be analyzed. Current methods for analyzing free-text death certificates rely solely on look-up tables for identifying specific substances, which must be frequently updated and maintained. To improve identification of drugs on death certificates, a deep learning named-entity recognition model was developed, which achieved an F1-score of 99.13%. This model can identify new drug misspellings and novel substances that are not present on current surveillance look-up tables, enhancing the surveillance of drug overdose deaths.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2634287921 |
source | Free E- Journals |
subjects | Artificial neural networks Certificates Death Drug overdose Drugs Fatalities Lookup tables Machine learning Surveillance |
title | Deep neural networks for fine-grained surveillance of overdose mortality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20neural%20networks%20for%20fine-grained%20surveillance%20of%20overdose%20mortality&rft.jtitle=arXiv.org&rft.au=Ward,%20Patrick%20J&rft.date=2022-06-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2634287921%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634287921&rft_id=info:pmid/&rfr_iscdi=true |