Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment

Distributed aircraft propulsion has renewed the interest in power-dense, high-efficiency power packs. Ceramic turbomachinery could be a major enabler, although no successful design has been achieved in microturbine rotors. Rotor blade loading is tensile and a hurdle for successful conversion to cera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2022-03, Vol.38 (2), p.221-228
Hauptverfasser: Dubois, Patrick K, Landry, Céderick, Thibault, Dominik, Plante, Jean-Sébastien, Picard, Mathieu, Picard, Benoît
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 2
container_start_page 221
container_title Journal of propulsion and power
container_volume 38
creator Dubois, Patrick K
Landry, Céderick
Thibault, Dominik
Plante, Jean-Sébastien
Picard, Mathieu
Picard, Benoît
description Distributed aircraft propulsion has renewed the interest in power-dense, high-efficiency power packs. Ceramic turbomachinery could be a major enabler, although no successful design has been achieved in microturbine rotors. Rotor blade loading is tensile and a hurdle for successful conversion to ceramics. The inside-out ceramic turbine (ICT) rotor uses the superior compressive properties of monolithic ceramics by supporting ceramic blades against a structural composite rotating shroud. This enables low stress levels throughout the blade, increasing reliability and extending service life. An experimental demonstration of two ICT designs was conducted with 15-kW scale prototypes to identify critical issues: design A, a flexible hub that clamps blades against the structural shroud and design B, a sliding-blade configuration that allows free displacement of the blade. The flexible-hub design was tested up to 1000°C. Rotor integrity was preserved, but local blade cracking occurred. The sliding-blade design was successfully tested up to 1100°C for over 1 hour at a tip speed of 350  m/s with no issue. Tensile loading at the ceramic/metallic interfaces remains the key challenge to address. Reducing friction should overcome blade cracking and allow the proposed ICT to reach the targeted temperature of 1275°C and tip speed of 425  m/s.
doi_str_mv 10.2514/1.B38004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634109081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634109081</sourcerecordid><originalsourceid>FETCH-LOGICAL-a285t-9cc3636498ea16b1a7341f08360d7ec52ea3dd3b4ac38d6493a30446fa417cb33</originalsourceid><addsrcrecordid>eNplkMFKw0AQhhdRsFbBR1gQwUvqbmaz2XprQ9VCoZf2HCbJxKakm7qbgH17UyIoeJp_4OOb4WfsXopJGEn1LCdzMEKoCzaSEUAAJtaXf_I1u_F-L4TURscjtp2TpbJqPUdb8GSHdU32gzxvSt7uiC-trwoK1l3LE3J4qHK-6VxWWXrhM8sXX0dy1YFsizWfeU_en5dbdlVi7enuZ47Z9nWxSd6D1fptmcxWAYYmaoNpnoMGraaGUOpMYgxKlsKAFkVMeRQSQlFApjAHU_QcIAildIlKxnkGMGYPg_foms-OfJvum87Z_mQa6t4lpsLInnoaqNw13jsq02P_M7pTKkV6Li2V6VBajz4OKFaIv7J_3DcBL2iH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634109081</pqid></control><display><type>article</type><title>Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment</title><source>Alma/SFX Local Collection</source><creator>Dubois, Patrick K ; Landry, Céderick ; Thibault, Dominik ; Plante, Jean-Sébastien ; Picard, Mathieu ; Picard, Benoît</creator><creatorcontrib>Dubois, Patrick K ; Landry, Céderick ; Thibault, Dominik ; Plante, Jean-Sébastien ; Picard, Mathieu ; Picard, Benoît</creatorcontrib><description>Distributed aircraft propulsion has renewed the interest in power-dense, high-efficiency power packs. Ceramic turbomachinery could be a major enabler, although no successful design has been achieved in microturbine rotors. Rotor blade loading is tensile and a hurdle for successful conversion to ceramics. The inside-out ceramic turbine (ICT) rotor uses the superior compressive properties of monolithic ceramics by supporting ceramic blades against a structural composite rotating shroud. This enables low stress levels throughout the blade, increasing reliability and extending service life. An experimental demonstration of two ICT designs was conducted with 15-kW scale prototypes to identify critical issues: design A, a flexible hub that clamps blades against the structural shroud and design B, a sliding-blade configuration that allows free displacement of the blade. The flexible-hub design was tested up to 1000°C. Rotor integrity was preserved, but local blade cracking occurred. The sliding-blade design was successfully tested up to 1100°C for over 1 hour at a tip speed of 350  m/s with no issue. Tensile loading at the ceramic/metallic interfaces remains the key challenge to address. Reducing friction should overcome blade cracking and allow the proposed ICT to reach the targeted temperature of 1275°C and tip speed of 425  m/s.</description><identifier>ISSN: 1533-3876</identifier><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B38004</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aircraft ; Aircraft propulsion ; Bending stresses ; Ceramics ; Clamps ; Compressive properties ; Compressor blades ; Configuration management ; Crack initiation ; Crack propagation ; Design ; Efficiency ; Friction reduction ; Gas turbine engines ; Power supplies ; Prototypes ; Rotor blades ; Rotor blades (turbomachinery) ; Service life ; Sliding ; Tip speed ; Turbines ; Turbomachinery</subject><ispartof>Journal of propulsion and power, 2022-03, Vol.38 (2), p.221-228</ispartof><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3876 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a285t-9cc3636498ea16b1a7341f08360d7ec52ea3dd3b4ac38d6493a30446fa417cb33</citedby><cites>FETCH-LOGICAL-a285t-9cc3636498ea16b1a7341f08360d7ec52ea3dd3b4ac38d6493a30446fa417cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dubois, Patrick K</creatorcontrib><creatorcontrib>Landry, Céderick</creatorcontrib><creatorcontrib>Thibault, Dominik</creatorcontrib><creatorcontrib>Plante, Jean-Sébastien</creatorcontrib><creatorcontrib>Picard, Mathieu</creatorcontrib><creatorcontrib>Picard, Benoît</creatorcontrib><title>Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment</title><title>Journal of propulsion and power</title><description>Distributed aircraft propulsion has renewed the interest in power-dense, high-efficiency power packs. Ceramic turbomachinery could be a major enabler, although no successful design has been achieved in microturbine rotors. Rotor blade loading is tensile and a hurdle for successful conversion to ceramics. The inside-out ceramic turbine (ICT) rotor uses the superior compressive properties of monolithic ceramics by supporting ceramic blades against a structural composite rotating shroud. This enables low stress levels throughout the blade, increasing reliability and extending service life. An experimental demonstration of two ICT designs was conducted with 15-kW scale prototypes to identify critical issues: design A, a flexible hub that clamps blades against the structural shroud and design B, a sliding-blade configuration that allows free displacement of the blade. The flexible-hub design was tested up to 1000°C. Rotor integrity was preserved, but local blade cracking occurred. The sliding-blade design was successfully tested up to 1100°C for over 1 hour at a tip speed of 350  m/s with no issue. Tensile loading at the ceramic/metallic interfaces remains the key challenge to address. Reducing friction should overcome blade cracking and allow the proposed ICT to reach the targeted temperature of 1275°C and tip speed of 425  m/s.</description><subject>Aircraft</subject><subject>Aircraft propulsion</subject><subject>Bending stresses</subject><subject>Ceramics</subject><subject>Clamps</subject><subject>Compressive properties</subject><subject>Compressor blades</subject><subject>Configuration management</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Design</subject><subject>Efficiency</subject><subject>Friction reduction</subject><subject>Gas turbine engines</subject><subject>Power supplies</subject><subject>Prototypes</subject><subject>Rotor blades</subject><subject>Rotor blades (turbomachinery)</subject><subject>Service life</subject><subject>Sliding</subject><subject>Tip speed</subject><subject>Turbines</subject><subject>Turbomachinery</subject><issn>1533-3876</issn><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkMFKw0AQhhdRsFbBR1gQwUvqbmaz2XprQ9VCoZf2HCbJxKakm7qbgH17UyIoeJp_4OOb4WfsXopJGEn1LCdzMEKoCzaSEUAAJtaXf_I1u_F-L4TURscjtp2TpbJqPUdb8GSHdU32gzxvSt7uiC-trwoK1l3LE3J4qHK-6VxWWXrhM8sXX0dy1YFsizWfeU_en5dbdlVi7enuZ47Z9nWxSd6D1fptmcxWAYYmaoNpnoMGraaGUOpMYgxKlsKAFkVMeRQSQlFApjAHU_QcIAildIlKxnkGMGYPg_foms-OfJvum87Z_mQa6t4lpsLInnoaqNw13jsq02P_M7pTKkV6Li2V6VBajz4OKFaIv7J_3DcBL2iH</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Dubois, Patrick K</creator><creator>Landry, Céderick</creator><creator>Thibault, Dominik</creator><creator>Plante, Jean-Sébastien</creator><creator>Picard, Mathieu</creator><creator>Picard, Benoît</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20220301</creationdate><title>Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment</title><author>Dubois, Patrick K ; Landry, Céderick ; Thibault, Dominik ; Plante, Jean-Sébastien ; Picard, Mathieu ; Picard, Benoît</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a285t-9cc3636498ea16b1a7341f08360d7ec52ea3dd3b4ac38d6493a30446fa417cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Aircraft propulsion</topic><topic>Bending stresses</topic><topic>Ceramics</topic><topic>Clamps</topic><topic>Compressive properties</topic><topic>Compressor blades</topic><topic>Configuration management</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Design</topic><topic>Efficiency</topic><topic>Friction reduction</topic><topic>Gas turbine engines</topic><topic>Power supplies</topic><topic>Prototypes</topic><topic>Rotor blades</topic><topic>Rotor blades (turbomachinery)</topic><topic>Service life</topic><topic>Sliding</topic><topic>Tip speed</topic><topic>Turbines</topic><topic>Turbomachinery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubois, Patrick K</creatorcontrib><creatorcontrib>Landry, Céderick</creatorcontrib><creatorcontrib>Thibault, Dominik</creatorcontrib><creatorcontrib>Plante, Jean-Sébastien</creatorcontrib><creatorcontrib>Picard, Mathieu</creatorcontrib><creatorcontrib>Picard, Benoît</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubois, Patrick K</au><au>Landry, Céderick</au><au>Thibault, Dominik</au><au>Plante, Jean-Sébastien</au><au>Picard, Mathieu</au><au>Picard, Benoît</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment</atitle><jtitle>Journal of propulsion and power</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>221</spage><epage>228</epage><pages>221-228</pages><issn>1533-3876</issn><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>Distributed aircraft propulsion has renewed the interest in power-dense, high-efficiency power packs. Ceramic turbomachinery could be a major enabler, although no successful design has been achieved in microturbine rotors. Rotor blade loading is tensile and a hurdle for successful conversion to ceramics. The inside-out ceramic turbine (ICT) rotor uses the superior compressive properties of monolithic ceramics by supporting ceramic blades against a structural composite rotating shroud. This enables low stress levels throughout the blade, increasing reliability and extending service life. An experimental demonstration of two ICT designs was conducted with 15-kW scale prototypes to identify critical issues: design A, a flexible hub that clamps blades against the structural shroud and design B, a sliding-blade configuration that allows free displacement of the blade. The flexible-hub design was tested up to 1000°C. Rotor integrity was preserved, but local blade cracking occurred. The sliding-blade design was successfully tested up to 1100°C for over 1 hour at a tip speed of 350  m/s with no issue. Tensile loading at the ceramic/metallic interfaces remains the key challenge to address. Reducing friction should overcome blade cracking and allow the proposed ICT to reach the targeted temperature of 1275°C and tip speed of 425  m/s.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B38004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1533-3876
ispartof Journal of propulsion and power, 2022-03, Vol.38 (2), p.221-228
issn 1533-3876
0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_2634109081
source Alma/SFX Local Collection
subjects Aircraft
Aircraft propulsion
Bending stresses
Ceramics
Clamps
Compressive properties
Compressor blades
Configuration management
Crack initiation
Crack propagation
Design
Efficiency
Friction reduction
Gas turbine engines
Power supplies
Prototypes
Rotor blades
Rotor blades (turbomachinery)
Service life
Sliding
Tip speed
Turbines
Turbomachinery
title Benefits and Challenges of the Inside-Out Ceramic Turbine: An Experimental Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benefits%20and%20Challenges%20of%20the%20Inside-Out%20Ceramic%20Turbine:%20An%20Experimental%20Assessment&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Dubois,%20Patrick%20K&rft.date=2022-03-01&rft.volume=38&rft.issue=2&rft.spage=221&rft.epage=228&rft.pages=221-228&rft.issn=1533-3876&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.B38004&rft_dat=%3Cproquest_cross%3E2634109081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634109081&rft_id=info:pmid/&rfr_iscdi=true