A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation

The quality of a semantic annotation is typically measured with its averaged class-accuracy value, whose computation requires scarce ground-truth annotations. We observe that humans accumulate knowledge through their vision and believe that the quality of a semantic annotation is proportionally rela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on smart sensing and intelligent systems 2015-01, Vol.8 (2), p.1284-1312
Hauptverfasser: Dewanto, Vektor, Aprinaldi, Ian, Zulfikar, Jatmiko, Wisnu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 2
container_start_page 1284
container_title International journal on smart sensing and intelligent systems
container_volume 8
creator Dewanto, Vektor
Aprinaldi
Ian, Zulfikar
Jatmiko, Wisnu
description The quality of a semantic annotation is typically measured with its averaged class-accuracy value, whose computation requires scarce ground-truth annotations. We observe that humans accumulate knowledge through their vision and believe that the quality of a semantic annotation is proportionally related to its compatibility with the vision-based knowledge. We propose a knowledge-compatibility benchmarker, whose backbone is a regression machine. It takes as input a semantic annotation and the vision-based knowledge, then outputs an estimate of the corresponding averaged class-accuracy value. The knowledge encodes three kinds of information, namely: cooccurrence statistics, scene properties and relative positions. We introduce three types of feature vectors for regression. Each specifies the characteristics of a probability vector that captures the compatibility between an annotation and each kind of the knowledge. Experiment results show that the Gradient Boosting regression outperforms the ν -Support Vector regression. It achieves best performance at an R -score of 0.737 and an MSE of 0.034. This indicates not only that the vision-based knowledge resembles humans’ common sense but also that the feature vector for regression is justifiable.
doi_str_mv 10.21307/ijssis-2017-807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634085771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634085771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9f1ff3f46658e681d33a55f18efad805eaa0877b66c03ec62cda1306355c7a83</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EElFIT3kStcE-x480SCEKDxFBQXrL8a2Dw9052Bei_HsMhwQN2-wUM7uaD6FzSi5Lyoi88puUfMIloRIrIo_QgFKpMBdEHf_Rp2iU0obkYZNSUjFA82nxFD6gLh7bsK-hWgOehWZrOr_yte8OxQ209rUx8Q1i4UIsXqAxbedtFusG2i47Q3uGTpypE4x-9hAtb-fL2T1ePN89zKYLbJlQHZ446hxzYyG4AqFoxZjh3FEFzlSKcDCGKClXQljCwIrSVibXE4xzK41iQ3TRn93G8L6D1OlN2MU2f9SlYGOiuJQ0u0jvsjGkFMHpbfS5wUFTor9x6R6X_sKlM64cue4je1N3ECtYx90hi9_7_0VVSUs1Zp-Pt3OH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634085771</pqid></control><display><type>article</type><title>A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dewanto, Vektor ; Aprinaldi ; Ian, Zulfikar ; Jatmiko, Wisnu</creator><creatorcontrib>Dewanto, Vektor ; Aprinaldi ; Ian, Zulfikar ; Jatmiko, Wisnu</creatorcontrib><description>The quality of a semantic annotation is typically measured with its averaged class-accuracy value, whose computation requires scarce ground-truth annotations. We observe that humans accumulate knowledge through their vision and believe that the quality of a semantic annotation is proportionally related to its compatibility with the vision-based knowledge. We propose a knowledge-compatibility benchmarker, whose backbone is a regression machine. It takes as input a semantic annotation and the vision-based knowledge, then outputs an estimate of the corresponding averaged class-accuracy value. The knowledge encodes three kinds of information, namely: cooccurrence statistics, scene properties and relative positions. We introduce three types of feature vectors for regression. Each specifies the characteristics of a probability vector that captures the compatibility between an annotation and each kind of the knowledge. Experiment results show that the Gradient Boosting regression outperforms the ν -Support Vector regression. It achieves best performance at an R -score of 0.737 and an MSE of 0.034. This indicates not only that the vision-based knowledge resembles humans’ common sense but also that the feature vector for regression is justifiable.</description><identifier>ISSN: 1178-5608</identifier><identifier>EISSN: 1178-5608</identifier><identifier>DOI: 10.21307/ijssis-2017-807</identifier><language>eng</language><publisher>Sydney: Sciendo</publisher><subject>Annotations ; averaged class accuracy ; Compatibility ; Image annotation ; Knowledge ; knowledge-compatibility benchmarker ; Regression ; Semantic segmentation ; Semantics ; Statistical analysis ; Support vector machines ; vision-based knowledge</subject><ispartof>International journal on smart sensing and intelligent systems, 2015-01, Vol.8 (2), p.1284-1312</ispartof><rights>2015. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9f1ff3f46658e681d33a55f18efad805eaa0877b66c03ec62cda1306355c7a83</citedby><cites>FETCH-LOGICAL-c368t-9f1ff3f46658e681d33a55f18efad805eaa0877b66c03ec62cda1306355c7a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dewanto, Vektor</creatorcontrib><creatorcontrib>Aprinaldi</creatorcontrib><creatorcontrib>Ian, Zulfikar</creatorcontrib><creatorcontrib>Jatmiko, Wisnu</creatorcontrib><title>A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation</title><title>International journal on smart sensing and intelligent systems</title><description>The quality of a semantic annotation is typically measured with its averaged class-accuracy value, whose computation requires scarce ground-truth annotations. We observe that humans accumulate knowledge through their vision and believe that the quality of a semantic annotation is proportionally related to its compatibility with the vision-based knowledge. We propose a knowledge-compatibility benchmarker, whose backbone is a regression machine. It takes as input a semantic annotation and the vision-based knowledge, then outputs an estimate of the corresponding averaged class-accuracy value. The knowledge encodes three kinds of information, namely: cooccurrence statistics, scene properties and relative positions. We introduce three types of feature vectors for regression. Each specifies the characteristics of a probability vector that captures the compatibility between an annotation and each kind of the knowledge. Experiment results show that the Gradient Boosting regression outperforms the ν -Support Vector regression. It achieves best performance at an R -score of 0.737 and an MSE of 0.034. This indicates not only that the vision-based knowledge resembles humans’ common sense but also that the feature vector for regression is justifiable.</description><subject>Annotations</subject><subject>averaged class accuracy</subject><subject>Compatibility</subject><subject>Image annotation</subject><subject>Knowledge</subject><subject>knowledge-compatibility benchmarker</subject><subject>Regression</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>vision-based knowledge</subject><issn>1178-5608</issn><issn>1178-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtPAzEQhC0EElFIT3kStcE-x480SCEKDxFBQXrL8a2Dw9052Bei_HsMhwQN2-wUM7uaD6FzSi5Lyoi88puUfMIloRIrIo_QgFKpMBdEHf_Rp2iU0obkYZNSUjFA82nxFD6gLh7bsK-hWgOehWZrOr_yte8OxQ209rUx8Q1i4UIsXqAxbedtFusG2i47Q3uGTpypE4x-9hAtb-fL2T1ePN89zKYLbJlQHZ446hxzYyG4AqFoxZjh3FEFzlSKcDCGKClXQljCwIrSVibXE4xzK41iQ3TRn93G8L6D1OlN2MU2f9SlYGOiuJQ0u0jvsjGkFMHpbfS5wUFTor9x6R6X_sKlM64cue4je1N3ECtYx90hi9_7_0VVSUs1Zp-Pt3OH</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Dewanto, Vektor</creator><creator>Aprinaldi</creator><creator>Ian, Zulfikar</creator><creator>Jatmiko, Wisnu</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150101</creationdate><title>A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation</title><author>Dewanto, Vektor ; Aprinaldi ; Ian, Zulfikar ; Jatmiko, Wisnu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9f1ff3f46658e681d33a55f18efad805eaa0877b66c03ec62cda1306355c7a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annotations</topic><topic>averaged class accuracy</topic><topic>Compatibility</topic><topic>Image annotation</topic><topic>Knowledge</topic><topic>knowledge-compatibility benchmarker</topic><topic>Regression</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>vision-based knowledge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dewanto, Vektor</creatorcontrib><creatorcontrib>Aprinaldi</creatorcontrib><creatorcontrib>Ian, Zulfikar</creatorcontrib><creatorcontrib>Jatmiko, Wisnu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal on smart sensing and intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dewanto, Vektor</au><au>Aprinaldi</au><au>Ian, Zulfikar</au><au>Jatmiko, Wisnu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation</atitle><jtitle>International journal on smart sensing and intelligent systems</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>2</issue><spage>1284</spage><epage>1312</epage><pages>1284-1312</pages><issn>1178-5608</issn><eissn>1178-5608</eissn><abstract>The quality of a semantic annotation is typically measured with its averaged class-accuracy value, whose computation requires scarce ground-truth annotations. We observe that humans accumulate knowledge through their vision and believe that the quality of a semantic annotation is proportionally related to its compatibility with the vision-based knowledge. We propose a knowledge-compatibility benchmarker, whose backbone is a regression machine. It takes as input a semantic annotation and the vision-based knowledge, then outputs an estimate of the corresponding averaged class-accuracy value. The knowledge encodes three kinds of information, namely: cooccurrence statistics, scene properties and relative positions. We introduce three types of feature vectors for regression. Each specifies the characteristics of a probability vector that captures the compatibility between an annotation and each kind of the knowledge. Experiment results show that the Gradient Boosting regression outperforms the ν -Support Vector regression. It achieves best performance at an R -score of 0.737 and an MSE of 0.034. This indicates not only that the vision-based knowledge resembles humans’ common sense but also that the feature vector for regression is justifiable.</abstract><cop>Sydney</cop><pub>Sciendo</pub><doi>10.21307/ijssis-2017-807</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-5608
ispartof International journal on smart sensing and intelligent systems, 2015-01, Vol.8 (2), p.1284-1312
issn 1178-5608
1178-5608
language eng
recordid cdi_proquest_journals_2634085771
source EZB-FREE-00999 freely available EZB journals
subjects Annotations
averaged class accuracy
Compatibility
Image annotation
Knowledge
knowledge-compatibility benchmarker
Regression
Semantic segmentation
Semantics
Statistical analysis
Support vector machines
vision-based knowledge
title A Novel Knowledge-Compatibility Benchmarker for Semantic Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Knowledge-Compatibility%20Benchmarker%20for%20Semantic%20Segmentation&rft.jtitle=International%20journal%20on%20smart%20sensing%20and%20intelligent%20systems&rft.au=Dewanto,%20Vektor&rft.date=2015-01-01&rft.volume=8&rft.issue=2&rft.spage=1284&rft.epage=1312&rft.pages=1284-1312&rft.issn=1178-5608&rft.eissn=1178-5608&rft_id=info:doi/10.21307/ijssis-2017-807&rft_dat=%3Cproquest_cross%3E2634085771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634085771&rft_id=info:pmid/&rfr_iscdi=true