A Comprehensive Review On The Impact Of Compressed Sensing In Wireless Sensor Networks
Sensor networking is a promising technology that facilitates the monitoring of the physical world using tiny, inexpensive wireless devices that are spatially distributed across a wide region. These networks are highly constrained in power, computational capacities and memory. Incorporation of techni...
Gespeichert in:
Veröffentlicht in: | International journal on smart sensing and intelligent systems 2016-06, Vol.9 (2), p.818-844 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 2 |
container_start_page | 818 |
container_title | International journal on smart sensing and intelligent systems |
container_volume | 9 |
creator | Kumar, G. Edwin Prem Baskaran, K. Blessing, R. Elijah Lydia, M. |
description | Sensor networking is a promising technology that facilitates the monitoring of the physical world using tiny, inexpensive wireless devices that are spatially distributed across a wide region. These networks are highly constrained in power, computational capacities and memory. Incorporation of techniques based on the concept of Compressed Sensing (CS) which aims to encode sparse signals using a much lower sampling rate than the traditional Nyquist approach has revolutionized the wireless network scenarios. An exhaustive survey on the impact and applications of CS in WSN and research challenges has been presented in this paper |
doi_str_mv | 10.21307/ijssis-2017-897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634069199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634069199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-d380bdaf1dd1c67472118841108f31207b19104be9e3b630d45cdd8e720e1d013</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsNTePS54ju7sptndg4dS_CgUC1r1uCTZSZvaJnE3beh_b9oU9OJcZni89wZ-hFwDu-UgmLzLV97nPuAMZKC0PCM9AKmCYcTU-Z_7kgy8X7F2hOYSoh75GNFxuakcLrHw-Q7pK-5ybOisoPMl0smmitOazrKTy3u09O1gLRZ0UtDP3OG6VY9a6egL1k3pvvwVucjitcfBaffJ--PDfPwcTGdPk_FoGqQiknVghWKJjTOwFtJIhpIDKBUCMJUJ4EwmoIGFCWoUSSSYDYeptQolZwiWgeiTm663cuX3Fn1tVuXWFe1LwyMRskiD1q2Lda7Uld47zEzl8k3s9gaYOQI0HUBzAGhagG3kvos08bpGZ3Hhtvv2-O3_L6q5AiV-ABHseFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634069199</pqid></control><display><type>article</type><title>A Comprehensive Review On The Impact Of Compressed Sensing In Wireless Sensor Networks</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kumar, G. Edwin Prem ; Baskaran, K. ; Blessing, R. Elijah ; Lydia, M.</creator><creatorcontrib>Kumar, G. Edwin Prem ; Baskaran, K. ; Blessing, R. Elijah ; Lydia, M.</creatorcontrib><description>Sensor networking is a promising technology that facilitates the monitoring of the physical world using tiny, inexpensive wireless devices that are spatially distributed across a wide region. These networks are highly constrained in power, computational capacities and memory. Incorporation of techniques based on the concept of Compressed Sensing (CS) which aims to encode sparse signals using a much lower sampling rate than the traditional Nyquist approach has revolutionized the wireless network scenarios. An exhaustive survey on the impact and applications of CS in WSN and research challenges has been presented in this paper</description><identifier>ISSN: 1178-5608</identifier><identifier>EISSN: 1178-5608</identifier><identifier>DOI: 10.21307/ijssis-2017-897</identifier><language>eng</language><publisher>Sydney: Sciendo</publisher><subject>Compressed Sensing ; Data Aggregation ; Data Recovery ; Distributed Compressed Sensing ; Kronecker Compressed Sensing ; Wireless networks ; Wireless Sensor Networks</subject><ispartof>International journal on smart sensing and intelligent systems, 2016-06, Vol.9 (2), p.818-844</ispartof><rights>2016. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-d380bdaf1dd1c67472118841108f31207b19104be9e3b630d45cdd8e720e1d013</citedby><cites>FETCH-LOGICAL-c367t-d380bdaf1dd1c67472118841108f31207b19104be9e3b630d45cdd8e720e1d013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, G. Edwin Prem</creatorcontrib><creatorcontrib>Baskaran, K.</creatorcontrib><creatorcontrib>Blessing, R. Elijah</creatorcontrib><creatorcontrib>Lydia, M.</creatorcontrib><title>A Comprehensive Review On The Impact Of Compressed Sensing In Wireless Sensor Networks</title><title>International journal on smart sensing and intelligent systems</title><description>Sensor networking is a promising technology that facilitates the monitoring of the physical world using tiny, inexpensive wireless devices that are spatially distributed across a wide region. These networks are highly constrained in power, computational capacities and memory. Incorporation of techniques based on the concept of Compressed Sensing (CS) which aims to encode sparse signals using a much lower sampling rate than the traditional Nyquist approach has revolutionized the wireless network scenarios. An exhaustive survey on the impact and applications of CS in WSN and research challenges has been presented in this paper</description><subject>Compressed Sensing</subject><subject>Data Aggregation</subject><subject>Data Recovery</subject><subject>Distributed Compressed Sensing</subject><subject>Kronecker Compressed Sensing</subject><subject>Wireless networks</subject><subject>Wireless Sensor Networks</subject><issn>1178-5608</issn><issn>1178-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsNTePS54ju7sptndg4dS_CgUC1r1uCTZSZvaJnE3beh_b9oU9OJcZni89wZ-hFwDu-UgmLzLV97nPuAMZKC0PCM9AKmCYcTU-Z_7kgy8X7F2hOYSoh75GNFxuakcLrHw-Q7pK-5ybOisoPMl0smmitOazrKTy3u09O1gLRZ0UtDP3OG6VY9a6egL1k3pvvwVucjitcfBaffJ--PDfPwcTGdPk_FoGqQiknVghWKJjTOwFtJIhpIDKBUCMJUJ4EwmoIGFCWoUSSSYDYeptQolZwiWgeiTm663cuX3Fn1tVuXWFe1LwyMRskiD1q2Lda7Uld47zEzl8k3s9gaYOQI0HUBzAGhagG3kvos08bpGZ3Hhtvv2-O3_L6q5AiV-ABHseFE</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Kumar, G. Edwin Prem</creator><creator>Baskaran, K.</creator><creator>Blessing, R. Elijah</creator><creator>Lydia, M.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160601</creationdate><title>A Comprehensive Review On The Impact Of Compressed Sensing In Wireless Sensor Networks</title><author>Kumar, G. Edwin Prem ; Baskaran, K. ; Blessing, R. Elijah ; Lydia, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-d380bdaf1dd1c67472118841108f31207b19104be9e3b630d45cdd8e720e1d013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressed Sensing</topic><topic>Data Aggregation</topic><topic>Data Recovery</topic><topic>Distributed Compressed Sensing</topic><topic>Kronecker Compressed Sensing</topic><topic>Wireless networks</topic><topic>Wireless Sensor Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, G. Edwin Prem</creatorcontrib><creatorcontrib>Baskaran, K.</creatorcontrib><creatorcontrib>Blessing, R. Elijah</creatorcontrib><creatorcontrib>Lydia, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal on smart sensing and intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, G. Edwin Prem</au><au>Baskaran, K.</au><au>Blessing, R. Elijah</au><au>Lydia, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comprehensive Review On The Impact Of Compressed Sensing In Wireless Sensor Networks</atitle><jtitle>International journal on smart sensing and intelligent systems</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>9</volume><issue>2</issue><spage>818</spage><epage>844</epage><pages>818-844</pages><issn>1178-5608</issn><eissn>1178-5608</eissn><abstract>Sensor networking is a promising technology that facilitates the monitoring of the physical world using tiny, inexpensive wireless devices that are spatially distributed across a wide region. These networks are highly constrained in power, computational capacities and memory. Incorporation of techniques based on the concept of Compressed Sensing (CS) which aims to encode sparse signals using a much lower sampling rate than the traditional Nyquist approach has revolutionized the wireless network scenarios. An exhaustive survey on the impact and applications of CS in WSN and research challenges has been presented in this paper</abstract><cop>Sydney</cop><pub>Sciendo</pub><doi>10.21307/ijssis-2017-897</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1178-5608 |
ispartof | International journal on smart sensing and intelligent systems, 2016-06, Vol.9 (2), p.818-844 |
issn | 1178-5608 1178-5608 |
language | eng |
recordid | cdi_proquest_journals_2634069199 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Compressed Sensing Data Aggregation Data Recovery Distributed Compressed Sensing Kronecker Compressed Sensing Wireless networks Wireless Sensor Networks |
title | A Comprehensive Review On The Impact Of Compressed Sensing In Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comprehensive%20Review%20On%20The%20Impact%20Of%20Compressed%20Sensing%20In%20Wireless%20Sensor%20Networks&rft.jtitle=International%20journal%20on%20smart%20sensing%20and%20intelligent%20systems&rft.au=Kumar,%20G.%20Edwin%20Prem&rft.date=2016-06-01&rft.volume=9&rft.issue=2&rft.spage=818&rft.epage=844&rft.pages=818-844&rft.issn=1178-5608&rft.eissn=1178-5608&rft_id=info:doi/10.21307/ijssis-2017-897&rft_dat=%3Cproquest_cross%3E2634069199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634069199&rft_id=info:pmid/&rfr_iscdi=true |