Performance Evalution of Video Surveillance Using Mete, Melt and Nidc Technique

To evaluate multi-target video tracking results, one needs to quantify the accuracy of the estimated target-size and the Cardinality error as the well as measure the frequency of occurrence of ID changes. By surveying existing multi-target tracking performance scores and, after discussing their limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on smart sensing and intelligent systems 2022-03, Vol.10 (5), p.25-45
Hauptverfasser: Anto Bennet, M, Srinath, R, Abirami, D, Thilagavathi, S, Soundarya, S, Yuvarani, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 5
container_start_page 25
container_title International journal on smart sensing and intelligent systems
container_volume 10
creator Anto Bennet, M
Srinath, R
Abirami, D
Thilagavathi, S
Soundarya, S
Yuvarani, R.
description To evaluate multi-target video tracking results, one needs to quantify the accuracy of the estimated target-size and the Cardinality error as the well as measure the frequency of occurrence of ID changes. By surveying existing multi-target tracking performance scores and, after discussing their limitations, the work proposes three parameter-independent measures for evaluating multi target video tracking. The measures consider target-size variations, combine accuracy and cardinality errors, quantify long-term tracking accuracy at different accuracy levels, and evaluate ID changes relative to the duration of the track in which they occur. The work conduct an extensive experimental validation of the proposed measures by comparing them with existing ones and by evaluating four state-of-the-art trackers on challenging real world Publicly-available data sets. The software implementing the proposed measures is made available online to facilitate their use by the research community.
doi_str_mv 10.21307/ijssis-2017-234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634040738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2634040738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-45359fbbdfa8bccfdd2e75559478c7ae7099debea6c5404477e00b718240d6553</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgqb17DHh1NY_NZvfgQUp9QLWCrdeQTWZryna3JruV_ntjK-jFOcx8MN8DPoTOKblilBN57VYhuJAwQmXCeHqEBpTKPBEZyY__4FM0CmFF4vCCSZoN0OwFfNX6tW4M4MlW133n2ga3FX5zFlr82vstuLre_xfBNUv8BB1cxl13WDcWPztr8BzMe-M-ejhDJ5WuA4x-7hAt7ibz8UMynd0_jm-niWGCdEkquCiqsrSVzktjKmsZSCFEkcrcSA2SFIWFEnRmRErSVEogpJQ0ZymxmRB8iC4OvhvfxtjQqVXb-yZGKpbxKCGS55FFDizj2xA8VGrj3Vr7naJE7ZtTh-bUd3MqNhclNwfJp6478BaWvt9F8Ov_n5QSwQT_AivbdnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634040738</pqid></control><display><type>article</type><title>Performance Evalution of Video Surveillance Using Mete, Melt and Nidc Technique</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Anto Bennet, M ; Srinath, R ; Abirami, D ; Thilagavathi, S ; Soundarya, S ; Yuvarani, R.</creator><creatorcontrib>Anto Bennet, M ; Srinath, R ; Abirami, D ; Thilagavathi, S ; Soundarya, S ; Yuvarani, R.</creatorcontrib><description>To evaluate multi-target video tracking results, one needs to quantify the accuracy of the estimated target-size and the Cardinality error as the well as measure the frequency of occurrence of ID changes. By surveying existing multi-target tracking performance scores and, after discussing their limitations, the work proposes three parameter-independent measures for evaluating multi target video tracking. The measures consider target-size variations, combine accuracy and cardinality errors, quantify long-term tracking accuracy at different accuracy levels, and evaluate ID changes relative to the duration of the track in which they occur. The work conduct an extensive experimental validation of the proposed measures by comparing them with existing ones and by evaluating four state-of-the-art trackers on challenging real world Publicly-available data sets. The software implementing the proposed measures is made available online to facilitate their use by the research community.</description><identifier>ISSN: 1178-5608</identifier><identifier>EISSN: 1178-5608</identifier><identifier>DOI: 10.21307/ijssis-2017-234</identifier><language>eng</language><publisher>Sydney: Sciendo</publisher><subject>Accuracy ; Error analysis ; Multi-TargetTrack-Before-Detect(MT-TBD) ; Multiple Extended Target Lost Track Ratio(MELT) ; Multiple target tracking ; Single Particle Tracking (SPT) ; State-of-the-art reviews</subject><ispartof>International journal on smart sensing and intelligent systems, 2022-03, Vol.10 (5), p.25-45</ispartof><rights>2017. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-45359fbbdfa8bccfdd2e75559478c7ae7099debea6c5404477e00b718240d6553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anto Bennet, M</creatorcontrib><creatorcontrib>Srinath, R</creatorcontrib><creatorcontrib>Abirami, D</creatorcontrib><creatorcontrib>Thilagavathi, S</creatorcontrib><creatorcontrib>Soundarya, S</creatorcontrib><creatorcontrib>Yuvarani, R.</creatorcontrib><title>Performance Evalution of Video Surveillance Using Mete, Melt and Nidc Technique</title><title>International journal on smart sensing and intelligent systems</title><description>To evaluate multi-target video tracking results, one needs to quantify the accuracy of the estimated target-size and the Cardinality error as the well as measure the frequency of occurrence of ID changes. By surveying existing multi-target tracking performance scores and, after discussing their limitations, the work proposes three parameter-independent measures for evaluating multi target video tracking. The measures consider target-size variations, combine accuracy and cardinality errors, quantify long-term tracking accuracy at different accuracy levels, and evaluate ID changes relative to the duration of the track in which they occur. The work conduct an extensive experimental validation of the proposed measures by comparing them with existing ones and by evaluating four state-of-the-art trackers on challenging real world Publicly-available data sets. The software implementing the proposed measures is made available online to facilitate their use by the research community.</description><subject>Accuracy</subject><subject>Error analysis</subject><subject>Multi-TargetTrack-Before-Detect(MT-TBD)</subject><subject>Multiple Extended Target Lost Track Ratio(MELT)</subject><subject>Multiple target tracking</subject><subject>Single Particle Tracking (SPT)</subject><subject>State-of-the-art reviews</subject><issn>1178-5608</issn><issn>1178-5608</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtLAzEQDqJgqb17DHh1NY_NZvfgQUp9QLWCrdeQTWZryna3JruV_ntjK-jFOcx8MN8DPoTOKblilBN57VYhuJAwQmXCeHqEBpTKPBEZyY__4FM0CmFF4vCCSZoN0OwFfNX6tW4M4MlW133n2ga3FX5zFlr82vstuLre_xfBNUv8BB1cxl13WDcWPztr8BzMe-M-ejhDJ5WuA4x-7hAt7ibz8UMynd0_jm-niWGCdEkquCiqsrSVzktjKmsZSCFEkcrcSA2SFIWFEnRmRErSVEogpJQ0ZymxmRB8iC4OvhvfxtjQqVXb-yZGKpbxKCGS55FFDizj2xA8VGrj3Vr7naJE7ZtTh-bUd3MqNhclNwfJp6478BaWvt9F8Ov_n5QSwQT_AivbdnM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Anto Bennet, M</creator><creator>Srinath, R</creator><creator>Abirami, D</creator><creator>Thilagavathi, S</creator><creator>Soundarya, S</creator><creator>Yuvarani, R.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220301</creationdate><title>Performance Evalution of Video Surveillance Using Mete, Melt and Nidc Technique</title><author>Anto Bennet, M ; Srinath, R ; Abirami, D ; Thilagavathi, S ; Soundarya, S ; Yuvarani, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-45359fbbdfa8bccfdd2e75559478c7ae7099debea6c5404477e00b718240d6553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Error analysis</topic><topic>Multi-TargetTrack-Before-Detect(MT-TBD)</topic><topic>Multiple Extended Target Lost Track Ratio(MELT)</topic><topic>Multiple target tracking</topic><topic>Single Particle Tracking (SPT)</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anto Bennet, M</creatorcontrib><creatorcontrib>Srinath, R</creatorcontrib><creatorcontrib>Abirami, D</creatorcontrib><creatorcontrib>Thilagavathi, S</creatorcontrib><creatorcontrib>Soundarya, S</creatorcontrib><creatorcontrib>Yuvarani, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal on smart sensing and intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anto Bennet, M</au><au>Srinath, R</au><au>Abirami, D</au><au>Thilagavathi, S</au><au>Soundarya, S</au><au>Yuvarani, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evalution of Video Surveillance Using Mete, Melt and Nidc Technique</atitle><jtitle>International journal on smart sensing and intelligent systems</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><spage>25</spage><epage>45</epage><pages>25-45</pages><issn>1178-5608</issn><eissn>1178-5608</eissn><abstract>To evaluate multi-target video tracking results, one needs to quantify the accuracy of the estimated target-size and the Cardinality error as the well as measure the frequency of occurrence of ID changes. By surveying existing multi-target tracking performance scores and, after discussing their limitations, the work proposes three parameter-independent measures for evaluating multi target video tracking. The measures consider target-size variations, combine accuracy and cardinality errors, quantify long-term tracking accuracy at different accuracy levels, and evaluate ID changes relative to the duration of the track in which they occur. The work conduct an extensive experimental validation of the proposed measures by comparing them with existing ones and by evaluating four state-of-the-art trackers on challenging real world Publicly-available data sets. The software implementing the proposed measures is made available online to facilitate their use by the research community.</abstract><cop>Sydney</cop><pub>Sciendo</pub><doi>10.21307/ijssis-2017-234</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1178-5608
ispartof International journal on smart sensing and intelligent systems, 2022-03, Vol.10 (5), p.25-45
issn 1178-5608
1178-5608
language eng
recordid cdi_proquest_journals_2634040738
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Error analysis
Multi-TargetTrack-Before-Detect(MT-TBD)
Multiple Extended Target Lost Track Ratio(MELT)
Multiple target tracking
Single Particle Tracking (SPT)
State-of-the-art reviews
title Performance Evalution of Video Surveillance Using Mete, Melt and Nidc Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evalution%20of%20Video%20Surveillance%20Using%20Mete,%20Melt%20and%20Nidc%20Technique&rft.jtitle=International%20journal%20on%20smart%20sensing%20and%20intelligent%20systems&rft.au=Anto%20Bennet,%20M&rft.date=2022-03-01&rft.volume=10&rft.issue=5&rft.spage=25&rft.epage=45&rft.pages=25-45&rft.issn=1178-5608&rft.eissn=1178-5608&rft_id=info:doi/10.21307/ijssis-2017-234&rft_dat=%3Cproquest_cross%3E2634040738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634040738&rft_id=info:pmid/&rfr_iscdi=true