Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite
Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isotherma...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.833, p.142341, Article 142341 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 142341 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 833 |
creator | Tzini, Maria-Ioanna T. Aristeidakis, John S. Christodoulou, Peter I. Kermanidis, Alexis T. Haidemenopoulos, Gregory N. Krizan, Daniel |
description | Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics.
[Display omitted]
•Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior. |
doi_str_mv | 10.1016/j.msea.2021.142341 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634024399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321016051</els_id><sourcerecordid>2634024399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVIoc7lBboSdD3To4vHo5JNSNM2kJISkrWQR0fJMWONK2kM2efBK-Ouuzr8_JcDH2OfBLQCRPdl024zulaCFK3QUmlxwhaiX6lGG9WdsgUYKZolGPWRneW8AQChYblg77_msVCze3UZeSAcPd9OHkeKL5wif3q8-81zQRzzV_6Nckm0ngt6vs8td3tM7gWr79Y0UnnjLvqqkqPYUPTzUINVxRymtHWFpsinwBOWGqiWm-typIIX7ENwY8bLf_ecPX-_fbr52dw__Li7ub5vBmV0aYIMCB2uFfSghOr7INYSvFadVlqteglGgA_CoDBd6JyBlV8ORgUPiGGl1Tn7fNzdpenPjLnYzTSnWF9a2SkNUitjakoeU0Oack4Y7C7R1qU3K8AeaNuNPdC2B9r2SLuWro6lSgr3hMnmgTBWApRwKNZP9L_6X37TiZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634024399</pqid></control><display><type>article</type><title>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tzini, Maria-Ioanna T. ; Aristeidakis, John S. ; Christodoulou, Peter I. ; Kermanidis, Alexis T. ; Haidemenopoulos, Gregory N. ; Krizan, Daniel</creator><creatorcontrib>Tzini, Maria-Ioanna T. ; Aristeidakis, John S. ; Christodoulou, Peter I. ; Kermanidis, Alexis T. ; Haidemenopoulos, Gregory N. ; Krizan, Daniel</creatorcontrib><description>Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics.
[Display omitted]
•Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.142341</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Control stability ; Evolution ; Grain size ; Heat treating ; Heat treatment ; Integrated approach ; Isothermal treatment ; Kinetics ; Martensite ; Martensitic transformations ; Modelling ; Multiphase ; Phase-field modeling ; Plastic deformation ; Property values ; Retained austenite ; Retained austenite stability ; Stability analysis ; Strain-induced transformation ; TRIP steels</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.833, p.142341, Article 142341</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 26, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</citedby><cites>FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</cites><orcidid>0000-0003-4347-3118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.142341$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tzini, Maria-Ioanna T.</creatorcontrib><creatorcontrib>Aristeidakis, John S.</creatorcontrib><creatorcontrib>Christodoulou, Peter I.</creatorcontrib><creatorcontrib>Kermanidis, Alexis T.</creatorcontrib><creatorcontrib>Haidemenopoulos, Gregory N.</creatorcontrib><creatorcontrib>Krizan, Daniel</creatorcontrib><title>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics.
[Display omitted]
•Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.</description><subject>Control stability</subject><subject>Evolution</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Integrated approach</subject><subject>Isothermal treatment</subject><subject>Kinetics</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Modelling</subject><subject>Multiphase</subject><subject>Phase-field modeling</subject><subject>Plastic deformation</subject><subject>Property values</subject><subject>Retained austenite</subject><subject>Retained austenite stability</subject><subject>Stability analysis</subject><subject>Strain-induced transformation</subject><subject>TRIP steels</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqGzEUhkVIoc7lBboSdD3To4vHo5JNSNM2kJISkrWQR0fJMWONK2kM2efBK-Ouuzr8_JcDH2OfBLQCRPdl024zulaCFK3QUmlxwhaiX6lGG9WdsgUYKZolGPWRneW8AQChYblg77_msVCze3UZeSAcPd9OHkeKL5wif3q8-81zQRzzV_6Nckm0ngt6vs8td3tM7gWr79Y0UnnjLvqqkqPYUPTzUINVxRymtHWFpsinwBOWGqiWm-typIIX7ENwY8bLf_ecPX-_fbr52dw__Li7ub5vBmV0aYIMCB2uFfSghOr7INYSvFadVlqteglGgA_CoDBd6JyBlV8ORgUPiGGl1Tn7fNzdpenPjLnYzTSnWF9a2SkNUitjakoeU0Oack4Y7C7R1qU3K8AeaNuNPdC2B9r2SLuWro6lSgr3hMnmgTBWApRwKNZP9L_6X37TiZU</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Tzini, Maria-Ioanna T.</creator><creator>Aristeidakis, John S.</creator><creator>Christodoulou, Peter I.</creator><creator>Kermanidis, Alexis T.</creator><creator>Haidemenopoulos, Gregory N.</creator><creator>Krizan, Daniel</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4347-3118</orcidid></search><sort><creationdate>20220126</creationdate><title>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</title><author>Tzini, Maria-Ioanna T. ; Aristeidakis, John S. ; Christodoulou, Peter I. ; Kermanidis, Alexis T. ; Haidemenopoulos, Gregory N. ; Krizan, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control stability</topic><topic>Evolution</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Integrated approach</topic><topic>Isothermal treatment</topic><topic>Kinetics</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Modelling</topic><topic>Multiphase</topic><topic>Phase-field modeling</topic><topic>Plastic deformation</topic><topic>Property values</topic><topic>Retained austenite</topic><topic>Retained austenite stability</topic><topic>Stability analysis</topic><topic>Strain-induced transformation</topic><topic>TRIP steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzini, Maria-Ioanna T.</creatorcontrib><creatorcontrib>Aristeidakis, John S.</creatorcontrib><creatorcontrib>Christodoulou, Peter I.</creatorcontrib><creatorcontrib>Kermanidis, Alexis T.</creatorcontrib><creatorcontrib>Haidemenopoulos, Gregory N.</creatorcontrib><creatorcontrib>Krizan, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzini, Maria-Ioanna T.</au><au>Aristeidakis, John S.</au><au>Christodoulou, Peter I.</au><au>Kermanidis, Alexis T.</au><au>Haidemenopoulos, Gregory N.</au><au>Krizan, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-01-26</date><risdate>2022</risdate><volume>833</volume><spage>142341</spage><pages>142341-</pages><artnum>142341</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics.
[Display omitted]
•Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.142341</doi><orcidid>https://orcid.org/0000-0003-4347-3118</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.833, p.142341, Article 142341 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2634024399 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Control stability Evolution Grain size Heat treating Heat treatment Integrated approach Isothermal treatment Kinetics Martensite Martensitic transformations Modelling Multiphase Phase-field modeling Plastic deformation Property values Retained austenite Retained austenite stability Stability analysis Strain-induced transformation TRIP steels |
title | Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-phase%20field%20modeling%20in%20TRIP%20steels:%20Distributed%20vs.%20average%20stability%20and%20strain-induced%20transformation%20of%20retained%20austenite&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Tzini,%20Maria-Ioanna%20T.&rft.date=2022-01-26&rft.volume=833&rft.spage=142341&rft.pages=142341-&rft.artnum=142341&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.142341&rft_dat=%3Cproquest_cross%3E2634024399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634024399&rft_id=info:pmid/&rft_els_id=S0921509321016051&rfr_iscdi=true |