Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite

Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isotherma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.833, p.142341, Article 142341
Hauptverfasser: Tzini, Maria-Ioanna T., Aristeidakis, John S., Christodoulou, Peter I., Kermanidis, Alexis T., Haidemenopoulos, Gregory N., Krizan, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 142341
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 833
creator Tzini, Maria-Ioanna T.
Aristeidakis, John S.
Christodoulou, Peter I.
Kermanidis, Alexis T.
Haidemenopoulos, Gregory N.
Krizan, Daniel
description Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics. [Display omitted] •Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.
doi_str_mv 10.1016/j.msea.2021.142341
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2634024399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321016051</els_id><sourcerecordid>2634024399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</originalsourceid><addsrcrecordid>eNp9kMtqGzEUhkVIoc7lBboSdD3To4vHo5JNSNM2kJISkrWQR0fJMWONK2kM2efBK-Ouuzr8_JcDH2OfBLQCRPdl024zulaCFK3QUmlxwhaiX6lGG9WdsgUYKZolGPWRneW8AQChYblg77_msVCze3UZeSAcPd9OHkeKL5wif3q8-81zQRzzV_6Nckm0ngt6vs8td3tM7gWr79Y0UnnjLvqqkqPYUPTzUINVxRymtHWFpsinwBOWGqiWm-typIIX7ENwY8bLf_ecPX-_fbr52dw__Li7ub5vBmV0aYIMCB2uFfSghOr7INYSvFadVlqteglGgA_CoDBd6JyBlV8ORgUPiGGl1Tn7fNzdpenPjLnYzTSnWF9a2SkNUitjakoeU0Oack4Y7C7R1qU3K8AeaNuNPdC2B9r2SLuWro6lSgr3hMnmgTBWApRwKNZP9L_6X37TiZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2634024399</pqid></control><display><type>article</type><title>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tzini, Maria-Ioanna T. ; Aristeidakis, John S. ; Christodoulou, Peter I. ; Kermanidis, Alexis T. ; Haidemenopoulos, Gregory N. ; Krizan, Daniel</creator><creatorcontrib>Tzini, Maria-Ioanna T. ; Aristeidakis, John S. ; Christodoulou, Peter I. ; Kermanidis, Alexis T. ; Haidemenopoulos, Gregory N. ; Krizan, Daniel</creatorcontrib><description>Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics. [Display omitted] •Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.142341</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Control stability ; Evolution ; Grain size ; Heat treating ; Heat treatment ; Integrated approach ; Isothermal treatment ; Kinetics ; Martensite ; Martensitic transformations ; Modelling ; Multiphase ; Phase-field modeling ; Plastic deformation ; Property values ; Retained austenite ; Retained austenite stability ; Stability analysis ; Strain-induced transformation ; TRIP steels</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.833, p.142341, Article 142341</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 26, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</citedby><cites>FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</cites><orcidid>0000-0003-4347-3118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.142341$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tzini, Maria-Ioanna T.</creatorcontrib><creatorcontrib>Aristeidakis, John S.</creatorcontrib><creatorcontrib>Christodoulou, Peter I.</creatorcontrib><creatorcontrib>Kermanidis, Alexis T.</creatorcontrib><creatorcontrib>Haidemenopoulos, Gregory N.</creatorcontrib><creatorcontrib>Krizan, Daniel</creatorcontrib><title>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics. [Display omitted] •Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.</description><subject>Control stability</subject><subject>Evolution</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Integrated approach</subject><subject>Isothermal treatment</subject><subject>Kinetics</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Modelling</subject><subject>Multiphase</subject><subject>Phase-field modeling</subject><subject>Plastic deformation</subject><subject>Property values</subject><subject>Retained austenite</subject><subject>Retained austenite stability</subject><subject>Stability analysis</subject><subject>Strain-induced transformation</subject><subject>TRIP steels</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqGzEUhkVIoc7lBboSdD3To4vHo5JNSNM2kJISkrWQR0fJMWONK2kM2efBK-Ouuzr8_JcDH2OfBLQCRPdl024zulaCFK3QUmlxwhaiX6lGG9WdsgUYKZolGPWRneW8AQChYblg77_msVCze3UZeSAcPd9OHkeKL5wif3q8-81zQRzzV_6Nckm0ngt6vs8td3tM7gWr79Y0UnnjLvqqkqPYUPTzUINVxRymtHWFpsinwBOWGqiWm-typIIX7ENwY8bLf_ecPX-_fbr52dw__Li7ub5vBmV0aYIMCB2uFfSghOr7INYSvFadVlqteglGgA_CoDBd6JyBlV8ORgUPiGGl1Tn7fNzdpenPjLnYzTSnWF9a2SkNUitjakoeU0Oack4Y7C7R1qU3K8AeaNuNPdC2B9r2SLuWro6lSgr3hMnmgTBWApRwKNZP9L_6X37TiZU</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Tzini, Maria-Ioanna T.</creator><creator>Aristeidakis, John S.</creator><creator>Christodoulou, Peter I.</creator><creator>Kermanidis, Alexis T.</creator><creator>Haidemenopoulos, Gregory N.</creator><creator>Krizan, Daniel</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4347-3118</orcidid></search><sort><creationdate>20220126</creationdate><title>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</title><author>Tzini, Maria-Ioanna T. ; Aristeidakis, John S. ; Christodoulou, Peter I. ; Kermanidis, Alexis T. ; Haidemenopoulos, Gregory N. ; Krizan, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-f2fe06eb308031388f1b20d43643437820910df19e196f6a907d5c93fd0eef743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Control stability</topic><topic>Evolution</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Integrated approach</topic><topic>Isothermal treatment</topic><topic>Kinetics</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Modelling</topic><topic>Multiphase</topic><topic>Phase-field modeling</topic><topic>Plastic deformation</topic><topic>Property values</topic><topic>Retained austenite</topic><topic>Retained austenite stability</topic><topic>Stability analysis</topic><topic>Strain-induced transformation</topic><topic>TRIP steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzini, Maria-Ioanna T.</creatorcontrib><creatorcontrib>Aristeidakis, John S.</creatorcontrib><creatorcontrib>Christodoulou, Peter I.</creatorcontrib><creatorcontrib>Kermanidis, Alexis T.</creatorcontrib><creatorcontrib>Haidemenopoulos, Gregory N.</creatorcontrib><creatorcontrib>Krizan, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzini, Maria-Ioanna T.</au><au>Aristeidakis, John S.</au><au>Christodoulou, Peter I.</au><au>Kermanidis, Alexis T.</au><au>Haidemenopoulos, Gregory N.</au><au>Krizan, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-01-26</date><risdate>2022</risdate><volume>833</volume><spage>142341</spage><pages>142341-</pages><artnum>142341</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Austenite stability and dispersion are key parameters controlling the strain-induced transformation of Retained Austenite (RA) to martensite in TRIP steels. Stabilization is achieved through a two-stage heat-treatment process, consisting of Intercritical Annealing (IA) followed by Bainitic Isothermal Treatment (BIT). In the present study, an integrated approach is developed, for the description of microstructural evolution of a TRIP700 steel during processing, using multi-phase field modeling. Two models are employed to assess RA stability, through MSσ, MS calculations, and strain-induced transformation kinetics of dispersed RA upon plastic deformation. The first model considers the grain size and composition distributions, while the second the respective average property values of RA obtained at the end of BIT. In-depth understanding of the influence of microstructural evolution on the transformation kinetics of RA can be achieved by taking into account the local properties of RA particles, presenting significant differences from that using average values. Results indicate that refined RA is more stable, transforming into martensite at late stages of deformation. Simulations of the RA particle size, stability and martensite transformation fraction resulting from uniaxial tension are validated against experiments conducted on TRIP700 steel under different BIT conditions, presenting good agreement. The proposed integrated approach can assist the design of TRIP steels by identifying optimal microstructural characteristics. [Display omitted] •Microstructural evolution during processing of TRIP steels with phase-field modeling.•Distinction between average and distributed stability of retained austenite.•Effect of distributed stability on strain-induced transformation kinetics.•Effect of distributed stability on mechanical behavior.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.142341</doi><orcidid>https://orcid.org/0000-0003-4347-3118</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.833, p.142341, Article 142341
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2634024399
source Elsevier ScienceDirect Journals Complete
subjects Control stability
Evolution
Grain size
Heat treating
Heat treatment
Integrated approach
Isothermal treatment
Kinetics
Martensite
Martensitic transformations
Modelling
Multiphase
Phase-field modeling
Plastic deformation
Property values
Retained austenite
Retained austenite stability
Stability analysis
Strain-induced transformation
TRIP steels
title Multi-phase field modeling in TRIP steels: Distributed vs. average stability and strain-induced transformation of retained austenite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-phase%20field%20modeling%20in%20TRIP%20steels:%20Distributed%20vs.%20average%20stability%20and%20strain-induced%20transformation%20of%20retained%20austenite&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Tzini,%20Maria-Ioanna%20T.&rft.date=2022-01-26&rft.volume=833&rft.spage=142341&rft.pages=142341-&rft.artnum=142341&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.142341&rft_dat=%3Cproquest_cross%3E2634024399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2634024399&rft_id=info:pmid/&rft_els_id=S0921509321016051&rfr_iscdi=true