IN MEMORIAM: J. MICHAEL DUNN, 1941–2021
In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Infor...
Gespeichert in:
Veröffentlicht in: | The bulletin of symbolic logic 2021-12, Vol.27 (4), p.519-525 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 4 |
container_start_page | 519 |
container_title | The bulletin of symbolic logic |
container_volume | 27 |
creator | Bimbó, Katalin |
description | In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics. |
doi_str_mv | 10.1017/bsl.2021.65 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2633734049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27107142</jstor_id><sourcerecordid>27107142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-279534d9692dd7c483ff64a4916fb244307b980efd98630e9142c8083e00b6dc3</originalsourceid><addsrcrecordid>eNo9j81LxDAQR4MouFZPngXBo7ROkmmSOS7LqoWtC6Ln0I8ELKtdk-7B_94sFU8zh8fv8Ri75lBw4PqhjbtCgOCFKk_YghPKvDSEp-kHTbkho87ZRYwDAEeF5YJl1cttva63r9WyvmRnvtlFd_V3M_b-uH5bPeeb7VO1Wm7yToCZcqGplNiTItH3ukMjvVfYIHHlW4EoQbdkwPk-6SQ44ig6A0Y6gFb1nczY3by7D-P3wcXJDuMhfCWlFUpKLRGQEnU_U10YYwzO2334-GzCj-Vgj7U21dpjrVVlom9meojTGP5RoVN48stf0B1MYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633734049</pqid></control><display><type>article</type><title>IN MEMORIAM: J. MICHAEL DUNN, 1941–2021</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics & Statistics</source><source>Cambridge University Press Journals Complete</source><creator>Bimbó, Katalin</creator><creatorcontrib>Bimbó, Katalin</creatorcontrib><description>In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2021.65</identifier><language>eng</language><publisher>New York: Cambridge University Press</publisher><subject>Algebra ; Boolean ; Computer science ; Fixed points (mathematics) ; In Memoriam ; Informatics ; Lattices (mathematics) ; Logic ; Microprocessors ; Philosophy ; Semantics</subject><ispartof>The bulletin of symbolic logic, 2021-12, Vol.27 (4), p.519-525</ispartof><rights>The Author(s), 2022</rights><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c208t-279534d9692dd7c483ff64a4916fb244307b980efd98630e9142c8083e00b6dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27107142$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27107142$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bimbó, Katalin</creatorcontrib><title>IN MEMORIAM: J. MICHAEL DUNN, 1941–2021</title><title>The bulletin of symbolic logic</title><description>In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.</description><subject>Algebra</subject><subject>Boolean</subject><subject>Computer science</subject><subject>Fixed points (mathematics)</subject><subject>In Memoriam</subject><subject>Informatics</subject><subject>Lattices (mathematics)</subject><subject>Logic</subject><subject>Microprocessors</subject><subject>Philosophy</subject><subject>Semantics</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9j81LxDAQR4MouFZPngXBo7ROkmmSOS7LqoWtC6Ln0I8ELKtdk-7B_94sFU8zh8fv8Ri75lBw4PqhjbtCgOCFKk_YghPKvDSEp-kHTbkho87ZRYwDAEeF5YJl1cttva63r9WyvmRnvtlFd_V3M_b-uH5bPeeb7VO1Wm7yToCZcqGplNiTItH3ukMjvVfYIHHlW4EoQbdkwPk-6SQ44ig6A0Y6gFb1nczY3by7D-P3wcXJDuMhfCWlFUpKLRGQEnU_U10YYwzO2334-GzCj-Vgj7U21dpjrVVlom9meojTGP5RoVN48stf0B1MYw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bimbó, Katalin</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PGAAH</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>IN MEMORIAM</title><author>Bimbó, Katalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-279534d9692dd7c483ff64a4916fb244307b980efd98630e9142c8083e00b6dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Boolean</topic><topic>Computer science</topic><topic>Fixed points (mathematics)</topic><topic>In Memoriam</topic><topic>Informatics</topic><topic>Lattices (mathematics)</topic><topic>Logic</topic><topic>Microprocessors</topic><topic>Philosophy</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bimbó, Katalin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Religion & Philosophy</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bimbó, Katalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IN MEMORIAM: J. MICHAEL DUNN, 1941–2021</atitle><jtitle>The bulletin of symbolic logic</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>519</spage><epage>525</epage><pages>519-525</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.</abstract><cop>New York</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2021.65</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-8986 |
ispartof | The bulletin of symbolic logic, 2021-12, Vol.27 (4), p.519-525 |
issn | 1079-8986 1943-5894 |
language | eng |
recordid | cdi_proquest_journals_2633734049 |
source | Jstor Complete Legacy; JSTOR Mathematics & Statistics; Cambridge University Press Journals Complete |
subjects | Algebra Boolean Computer science Fixed points (mathematics) In Memoriam Informatics Lattices (mathematics) Logic Microprocessors Philosophy Semantics |
title | IN MEMORIAM: J. MICHAEL DUNN, 1941–2021 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IN%20MEMORIAM:%20J.%20MICHAEL%20DUNN,%201941%E2%80%932021&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=Bimb%C3%B3,%20Katalin&rft.date=2021-12-01&rft.volume=27&rft.issue=4&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2021.65&rft_dat=%3Cjstor_proqu%3E27107142%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633734049&rft_id=info:pmid/&rft_jstor_id=27107142&rfr_iscdi=true |