IN MEMORIAM: J. MICHAEL DUNN, 1941–2021

In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The bulletin of symbolic logic 2021-12, Vol.27 (4), p.519-525
1. Verfasser: Bimbó, Katalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 4
container_start_page 519
container_title The bulletin of symbolic logic
container_volume 27
creator Bimbó, Katalin
description In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.
doi_str_mv 10.1017/bsl.2021.65
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2633734049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27107142</jstor_id><sourcerecordid>27107142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-279534d9692dd7c483ff64a4916fb244307b980efd98630e9142c8083e00b6dc3</originalsourceid><addsrcrecordid>eNo9j81LxDAQR4MouFZPngXBo7ROkmmSOS7LqoWtC6Ln0I8ELKtdk-7B_94sFU8zh8fv8Ri75lBw4PqhjbtCgOCFKk_YghPKvDSEp-kHTbkho87ZRYwDAEeF5YJl1cttva63r9WyvmRnvtlFd_V3M_b-uH5bPeeb7VO1Wm7yToCZcqGplNiTItH3ukMjvVfYIHHlW4EoQbdkwPk-6SQ44ig6A0Y6gFb1nczY3by7D-P3wcXJDuMhfCWlFUpKLRGQEnU_U10YYwzO2334-GzCj-Vgj7U21dpjrVVlom9meojTGP5RoVN48stf0B1MYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633734049</pqid></control><display><type>article</type><title>IN MEMORIAM: J. MICHAEL DUNN, 1941–2021</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics &amp; Statistics</source><source>Cambridge University Press Journals Complete</source><creator>Bimbó, Katalin</creator><creatorcontrib>Bimbó, Katalin</creatorcontrib><description>In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2021.65</identifier><language>eng</language><publisher>New York: Cambridge University Press</publisher><subject>Algebra ; Boolean ; Computer science ; Fixed points (mathematics) ; In Memoriam ; Informatics ; Lattices (mathematics) ; Logic ; Microprocessors ; Philosophy ; Semantics</subject><ispartof>The bulletin of symbolic logic, 2021-12, Vol.27 (4), p.519-525</ispartof><rights>The Author(s), 2022</rights><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of Association for Symbolic Logic</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c208t-279534d9692dd7c483ff64a4916fb244307b980efd98630e9142c8083e00b6dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27107142$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27107142$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Bimbó, Katalin</creatorcontrib><title>IN MEMORIAM: J. MICHAEL DUNN, 1941–2021</title><title>The bulletin of symbolic logic</title><description>In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.</description><subject>Algebra</subject><subject>Boolean</subject><subject>Computer science</subject><subject>Fixed points (mathematics)</subject><subject>In Memoriam</subject><subject>Informatics</subject><subject>Lattices (mathematics)</subject><subject>Logic</subject><subject>Microprocessors</subject><subject>Philosophy</subject><subject>Semantics</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9j81LxDAQR4MouFZPngXBo7ROkmmSOS7LqoWtC6Ln0I8ELKtdk-7B_94sFU8zh8fv8Ri75lBw4PqhjbtCgOCFKk_YghPKvDSEp-kHTbkho87ZRYwDAEeF5YJl1cttva63r9WyvmRnvtlFd_V3M_b-uH5bPeeb7VO1Wm7yToCZcqGplNiTItH3ukMjvVfYIHHlW4EoQbdkwPk-6SQ44ig6A0Y6gFb1nczY3by7D-P3wcXJDuMhfCWlFUpKLRGQEnU_U10YYwzO2334-GzCj-Vgj7U21dpjrVVlom9meojTGP5RoVN48stf0B1MYw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bimbó, Katalin</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PGAAH</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>IN MEMORIAM</title><author>Bimbó, Katalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-279534d9692dd7c483ff64a4916fb244307b980efd98630e9142c8083e00b6dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Boolean</topic><topic>Computer science</topic><topic>Fixed points (mathematics)</topic><topic>In Memoriam</topic><topic>Informatics</topic><topic>Lattices (mathematics)</topic><topic>Logic</topic><topic>Microprocessors</topic><topic>Philosophy</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bimbó, Katalin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Religion &amp; Philosophy</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bimbó, Katalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IN MEMORIAM: J. MICHAEL DUNN, 1941–2021</atitle><jtitle>The bulletin of symbolic logic</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>27</volume><issue>4</issue><spage>519</spage><epage>525</epage><pages>519-525</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>In 1969, Dunn was appointed an associate professor in the Department of Philosophy at Indiana University in Bloomington, Indiana, and he stayed on the faculty at IU until 2007, when he retired as University Dean of the School of Informatics, Oscar R. Ewing Professor of Philosophy, Professor of Informatics, Professor of Computer Science, and Core Faculty in Cognitive Science. Dunn showed that $\boldsymbol{\mathit{4}}$ , the four-element lattice with two incomparable elements on which negation has fixed points, plays a fundamental role among De Morgan lattices, and hence, for first-degree entailments fde; (the implication-free fragment of $\mathbf {R}$ and of the logic of entailment $\mathbf {E}$ ). A simple form of this incompleteness is practically obvious to anybody who is familiar with standard definitions of the language and the interpretation of fol; however, [36] proved incompleteness in a stronger sense using Gödel’s incompleteness theorem. To wit, logical consequence that is invariant under extensions of the language by new name constants circumvents the crucial step in the incompleteness argument; this notion is pivotal in Henkin-style completeness proofs for first-order logics.</abstract><cop>New York</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2021.65</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-8986
ispartof The bulletin of symbolic logic, 2021-12, Vol.27 (4), p.519-525
issn 1079-8986
1943-5894
language eng
recordid cdi_proquest_journals_2633734049
source Jstor Complete Legacy; JSTOR Mathematics & Statistics; Cambridge University Press Journals Complete
subjects Algebra
Boolean
Computer science
Fixed points (mathematics)
In Memoriam
Informatics
Lattices (mathematics)
Logic
Microprocessors
Philosophy
Semantics
title IN MEMORIAM: J. MICHAEL DUNN, 1941–2021
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A02%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IN%20MEMORIAM:%20J.%20MICHAEL%20DUNN,%201941%E2%80%932021&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=Bimb%C3%B3,%20Katalin&rft.date=2021-12-01&rft.volume=27&rft.issue=4&rft.spage=519&rft.epage=525&rft.pages=519-525&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2021.65&rft_dat=%3Cjstor_proqu%3E27107142%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633734049&rft_id=info:pmid/&rft_jstor_id=27107142&rfr_iscdi=true