In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis
Key message An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry ( Morus indica cv. G4) seedlings. Mulberry ( Morus ) is a perennial tree species with a wide range of commercial applications. Its leaves are predomi...
Gespeichert in:
Veröffentlicht in: | Trees (Berlin, West) West), 2022-02, Vol.36 (1), p.113-125 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Trees (Berlin, West) |
container_volume | 36 |
creator | Sarkar, Tanmoy Ravindra, K. N. Doss, S. Gandhi Kumar, P. M. Pratheesh Tewary, Pankaj |
description | Key message
An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry (
Morus indica
cv. G4) seedlings.
Mulberry (
Morus
) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm (
Bombyx mori
L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L)
,
silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of
ex vitro
survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars. |
doi_str_mv | 10.1007/s00468-021-02186-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633338094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633338094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOKf_gE8BnzuTJk3TRxk6BxNf9h7a5tpldMm8tMP993Zu4JsHx8Hd930HP0IeOZtxxvLnyJhUOmEpP7VWSXFFJlyKNElTnV2TCSsET7gu2C25i3HLGBOKpxMSl54eXI-BIrTgAcveBU9DQ3dDVwHike670veRNhh2NALYzvmWwvdlPSo_Ag6ROm9dXdL6MKMLSfsNhqHdUOsQ6p4GbEsfTg-ii_fkpim7CA-XOSXrt9f1_D1ZfS6W85dVUgte9EmV5VLnqbWSZcBsXXGbay4lh0zZrIRC2UY3Bag8F7oEaMazzoWsMqsyycSUPJ1j9xi-Boi92YYB_fjRpEqMpVkhR1V6VtUYYkRozB7drsSj4cyc2JozWzNyNb9sTTGaxNkUR7FvAf-i_3H9ABGhfcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633338094</pqid></control><display><type>article</type><title>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sarkar, Tanmoy ; Ravindra, K. N. ; Doss, S. Gandhi ; Kumar, P. M. Pratheesh ; Tewary, Pankaj</creator><creatorcontrib>Sarkar, Tanmoy ; Ravindra, K. N. ; Doss, S. Gandhi ; Kumar, P. M. Pratheesh ; Tewary, Pankaj</creatorcontrib><description>Key message
An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry (
Morus indica
cv. G4) seedlings.
Mulberry (
Morus
) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm (
Bombyx mori
L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L)
,
silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of
ex vitro
survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.</description><identifier>ISSN: 0931-1890</identifier><identifier>EISSN: 1432-2285</identifier><identifier>DOI: 10.1007/s00468-021-02186-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Activated charcoal ; Additives ; Agriculture ; Biomedical and Life Sciences ; Bombyx mori ; Butyric acid ; Calcium chloride ; Charcoal ; Cultivars ; Elongation ; Explants ; Forestry ; Genetic transformation ; Genomes ; Genotypes ; Gibberellic acid ; Growth regulators ; Indole-3-butyric acid ; Leaves ; Life Sciences ; Morus indica ; Organogenesis ; Original Article ; Plant Anatomy/Development ; Plant growth ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Plant species ; Plantlets ; Putrescine ; Regeneration ; Robustness ; Rooting ; Seed Biology and Micropropagation ; Seedlings ; Shoots ; Silkworms ; Silver ; Silver nitrate ; Thidiazuron</subject><ispartof>Trees (Berlin, West), 2022-02, Vol.36 (1), p.113-125</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</citedby><cites>FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</cites><orcidid>0000-0002-1885-2864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00468-021-02186-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00468-021-02186-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sarkar, Tanmoy</creatorcontrib><creatorcontrib>Ravindra, K. N.</creatorcontrib><creatorcontrib>Doss, S. Gandhi</creatorcontrib><creatorcontrib>Kumar, P. M. Pratheesh</creatorcontrib><creatorcontrib>Tewary, Pankaj</creatorcontrib><title>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</title><title>Trees (Berlin, West)</title><addtitle>Trees</addtitle><description>Key message
An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry (
Morus indica
cv. G4) seedlings.
Mulberry (
Morus
) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm (
Bombyx mori
L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L)
,
silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of
ex vitro
survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.</description><subject>Activated carbon</subject><subject>Activated charcoal</subject><subject>Additives</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Bombyx mori</subject><subject>Butyric acid</subject><subject>Calcium chloride</subject><subject>Charcoal</subject><subject>Cultivars</subject><subject>Elongation</subject><subject>Explants</subject><subject>Forestry</subject><subject>Genetic transformation</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Gibberellic acid</subject><subject>Growth regulators</subject><subject>Indole-3-butyric acid</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Morus indica</subject><subject>Organogenesis</subject><subject>Original Article</subject><subject>Plant Anatomy/Development</subject><subject>Plant growth</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plantlets</subject><subject>Putrescine</subject><subject>Regeneration</subject><subject>Robustness</subject><subject>Rooting</subject><subject>Seed Biology and Micropropagation</subject><subject>Seedlings</subject><subject>Shoots</subject><subject>Silkworms</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Thidiazuron</subject><issn>0931-1890</issn><issn>1432-2285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kNFLwzAQxoMoOKf_gE8BnzuTJk3TRxk6BxNf9h7a5tpldMm8tMP993Zu4JsHx8Hd930HP0IeOZtxxvLnyJhUOmEpP7VWSXFFJlyKNElTnV2TCSsET7gu2C25i3HLGBOKpxMSl54eXI-BIrTgAcveBU9DQ3dDVwHike670veRNhh2NALYzvmWwvdlPSo_Ag6ROm9dXdL6MKMLSfsNhqHdUOsQ6p4GbEsfTg-ii_fkpim7CA-XOSXrt9f1_D1ZfS6W85dVUgte9EmV5VLnqbWSZcBsXXGbay4lh0zZrIRC2UY3Bag8F7oEaMazzoWsMqsyycSUPJ1j9xi-Boi92YYB_fjRpEqMpVkhR1V6VtUYYkRozB7drsSj4cyc2JozWzNyNb9sTTGaxNkUR7FvAf-i_3H9ABGhfcY</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sarkar, Tanmoy</creator><creator>Ravindra, K. N.</creator><creator>Doss, S. Gandhi</creator><creator>Kumar, P. M. Pratheesh</creator><creator>Tewary, Pankaj</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1885-2864</orcidid></search><sort><creationdate>20220201</creationdate><title>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</title><author>Sarkar, Tanmoy ; Ravindra, K. N. ; Doss, S. Gandhi ; Kumar, P. M. Pratheesh ; Tewary, Pankaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Activated charcoal</topic><topic>Additives</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Bombyx mori</topic><topic>Butyric acid</topic><topic>Calcium chloride</topic><topic>Charcoal</topic><topic>Cultivars</topic><topic>Elongation</topic><topic>Explants</topic><topic>Forestry</topic><topic>Genetic transformation</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Gibberellic acid</topic><topic>Growth regulators</topic><topic>Indole-3-butyric acid</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Morus indica</topic><topic>Organogenesis</topic><topic>Original Article</topic><topic>Plant Anatomy/Development</topic><topic>Plant growth</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plantlets</topic><topic>Putrescine</topic><topic>Regeneration</topic><topic>Robustness</topic><topic>Rooting</topic><topic>Seed Biology and Micropropagation</topic><topic>Seedlings</topic><topic>Shoots</topic><topic>Silkworms</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Thidiazuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Tanmoy</creatorcontrib><creatorcontrib>Ravindra, K. N.</creatorcontrib><creatorcontrib>Doss, S. Gandhi</creatorcontrib><creatorcontrib>Kumar, P. M. Pratheesh</creatorcontrib><creatorcontrib>Tewary, Pankaj</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><jtitle>Trees (Berlin, West)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Tanmoy</au><au>Ravindra, K. N.</au><au>Doss, S. Gandhi</au><au>Kumar, P. M. Pratheesh</au><au>Tewary, Pankaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</atitle><jtitle>Trees (Berlin, West)</jtitle><stitle>Trees</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><spage>113</spage><epage>125</epage><pages>113-125</pages><issn>0931-1890</issn><eissn>1432-2285</eissn><abstract>Key message
An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry (
Morus indica
cv. G4) seedlings.
Mulberry (
Morus
) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm (
Bombyx mori
L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L)
,
silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of
ex vitro
survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00468-021-02186-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1885-2864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0931-1890 |
ispartof | Trees (Berlin, West), 2022-02, Vol.36 (1), p.113-125 |
issn | 0931-1890 1432-2285 |
language | eng |
recordid | cdi_proquest_journals_2633338094 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activated carbon Activated charcoal Additives Agriculture Biomedical and Life Sciences Bombyx mori Butyric acid Calcium chloride Charcoal Cultivars Elongation Explants Forestry Genetic transformation Genomes Genotypes Gibberellic acid Growth regulators Indole-3-butyric acid Leaves Life Sciences Morus indica Organogenesis Original Article Plant Anatomy/Development Plant growth Plant Pathology Plant Physiology Plant Sciences Plant species Plantlets Putrescine Regeneration Robustness Rooting Seed Biology and Micropropagation Seedlings Shoots Silkworms Silver Silver nitrate Thidiazuron |
title | In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20regeneration%20of%20mulberry%20plants%20from%20seedling%20explants%20of%20Morus%20indica%20cv.%20G4%20through%20direct%20organogenesis&rft.jtitle=Trees%20(Berlin,%20West)&rft.au=Sarkar,%20Tanmoy&rft.date=2022-02-01&rft.volume=36&rft.issue=1&rft.spage=113&rft.epage=125&rft.pages=113-125&rft.issn=0931-1890&rft.eissn=1432-2285&rft_id=info:doi/10.1007/s00468-021-02186-9&rft_dat=%3Cproquest_cross%3E2633338094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633338094&rft_id=info:pmid/&rfr_iscdi=true |