In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis

Key message An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry ( Morus indica cv. G4) seedlings. Mulberry ( Morus ) is a perennial tree species with a wide range of commercial applications. Its leaves are predomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trees (Berlin, West) West), 2022-02, Vol.36 (1), p.113-125
Hauptverfasser: Sarkar, Tanmoy, Ravindra, K. N., Doss, S. Gandhi, Kumar, P. M. Pratheesh, Tewary, Pankaj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue 1
container_start_page 113
container_title Trees (Berlin, West)
container_volume 36
creator Sarkar, Tanmoy
Ravindra, K. N.
Doss, S. Gandhi
Kumar, P. M. Pratheesh
Tewary, Pankaj
description Key message An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry ( Morus indica cv. G4) seedlings. Mulberry ( Morus ) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm ( Bombyx mori L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L) , silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of ex vitro survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.
doi_str_mv 10.1007/s00468-021-02186-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633338094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633338094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOKf_gE8BnzuTJk3TRxk6BxNf9h7a5tpldMm8tMP993Zu4JsHx8Hd930HP0IeOZtxxvLnyJhUOmEpP7VWSXFFJlyKNElTnV2TCSsET7gu2C25i3HLGBOKpxMSl54eXI-BIrTgAcveBU9DQ3dDVwHike670veRNhh2NALYzvmWwvdlPSo_Ag6ROm9dXdL6MKMLSfsNhqHdUOsQ6p4GbEsfTg-ii_fkpim7CA-XOSXrt9f1_D1ZfS6W85dVUgte9EmV5VLnqbWSZcBsXXGbay4lh0zZrIRC2UY3Bag8F7oEaMazzoWsMqsyycSUPJ1j9xi-Boi92YYB_fjRpEqMpVkhR1V6VtUYYkRozB7drsSj4cyc2JozWzNyNb9sTTGaxNkUR7FvAf-i_3H9ABGhfcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633338094</pqid></control><display><type>article</type><title>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sarkar, Tanmoy ; Ravindra, K. N. ; Doss, S. Gandhi ; Kumar, P. M. Pratheesh ; Tewary, Pankaj</creator><creatorcontrib>Sarkar, Tanmoy ; Ravindra, K. N. ; Doss, S. Gandhi ; Kumar, P. M. Pratheesh ; Tewary, Pankaj</creatorcontrib><description>Key message An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry ( Morus indica cv. G4) seedlings. Mulberry ( Morus ) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm ( Bombyx mori L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L) , silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of ex vitro survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.</description><identifier>ISSN: 0931-1890</identifier><identifier>EISSN: 1432-2285</identifier><identifier>DOI: 10.1007/s00468-021-02186-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Activated charcoal ; Additives ; Agriculture ; Biomedical and Life Sciences ; Bombyx mori ; Butyric acid ; Calcium chloride ; Charcoal ; Cultivars ; Elongation ; Explants ; Forestry ; Genetic transformation ; Genomes ; Genotypes ; Gibberellic acid ; Growth regulators ; Indole-3-butyric acid ; Leaves ; Life Sciences ; Morus indica ; Organogenesis ; Original Article ; Plant Anatomy/Development ; Plant growth ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Plant species ; Plantlets ; Putrescine ; Regeneration ; Robustness ; Rooting ; Seed Biology and Micropropagation ; Seedlings ; Shoots ; Silkworms ; Silver ; Silver nitrate ; Thidiazuron</subject><ispartof>Trees (Berlin, West), 2022-02, Vol.36 (1), p.113-125</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. corrected publication 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</citedby><cites>FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</cites><orcidid>0000-0002-1885-2864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00468-021-02186-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00468-021-02186-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sarkar, Tanmoy</creatorcontrib><creatorcontrib>Ravindra, K. N.</creatorcontrib><creatorcontrib>Doss, S. Gandhi</creatorcontrib><creatorcontrib>Kumar, P. M. Pratheesh</creatorcontrib><creatorcontrib>Tewary, Pankaj</creatorcontrib><title>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</title><title>Trees (Berlin, West)</title><addtitle>Trees</addtitle><description>Key message An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry ( Morus indica cv. G4) seedlings. Mulberry ( Morus ) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm ( Bombyx mori L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L) , silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of ex vitro survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.</description><subject>Activated carbon</subject><subject>Activated charcoal</subject><subject>Additives</subject><subject>Agriculture</subject><subject>Biomedical and Life Sciences</subject><subject>Bombyx mori</subject><subject>Butyric acid</subject><subject>Calcium chloride</subject><subject>Charcoal</subject><subject>Cultivars</subject><subject>Elongation</subject><subject>Explants</subject><subject>Forestry</subject><subject>Genetic transformation</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Gibberellic acid</subject><subject>Growth regulators</subject><subject>Indole-3-butyric acid</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Morus indica</subject><subject>Organogenesis</subject><subject>Original Article</subject><subject>Plant Anatomy/Development</subject><subject>Plant growth</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plantlets</subject><subject>Putrescine</subject><subject>Regeneration</subject><subject>Robustness</subject><subject>Rooting</subject><subject>Seed Biology and Micropropagation</subject><subject>Seedlings</subject><subject>Shoots</subject><subject>Silkworms</subject><subject>Silver</subject><subject>Silver nitrate</subject><subject>Thidiazuron</subject><issn>0931-1890</issn><issn>1432-2285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kNFLwzAQxoMoOKf_gE8BnzuTJk3TRxk6BxNf9h7a5tpldMm8tMP993Zu4JsHx8Hd930HP0IeOZtxxvLnyJhUOmEpP7VWSXFFJlyKNElTnV2TCSsET7gu2C25i3HLGBOKpxMSl54eXI-BIrTgAcveBU9DQ3dDVwHike670veRNhh2NALYzvmWwvdlPSo_Ag6ROm9dXdL6MKMLSfsNhqHdUOsQ6p4GbEsfTg-ii_fkpim7CA-XOSXrt9f1_D1ZfS6W85dVUgte9EmV5VLnqbWSZcBsXXGbay4lh0zZrIRC2UY3Bag8F7oEaMazzoWsMqsyycSUPJ1j9xi-Boi92YYB_fjRpEqMpVkhR1V6VtUYYkRozB7drsSj4cyc2JozWzNyNb9sTTGaxNkUR7FvAf-i_3H9ABGhfcY</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Sarkar, Tanmoy</creator><creator>Ravindra, K. N.</creator><creator>Doss, S. Gandhi</creator><creator>Kumar, P. M. Pratheesh</creator><creator>Tewary, Pankaj</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-1885-2864</orcidid></search><sort><creationdate>20220201</creationdate><title>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</title><author>Sarkar, Tanmoy ; Ravindra, K. N. ; Doss, S. Gandhi ; Kumar, P. M. Pratheesh ; Tewary, Pankaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b574872dd405e0dcb1d781441e56d5ae96df8f9e67738aeefd788734b5d65403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Activated charcoal</topic><topic>Additives</topic><topic>Agriculture</topic><topic>Biomedical and Life Sciences</topic><topic>Bombyx mori</topic><topic>Butyric acid</topic><topic>Calcium chloride</topic><topic>Charcoal</topic><topic>Cultivars</topic><topic>Elongation</topic><topic>Explants</topic><topic>Forestry</topic><topic>Genetic transformation</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Gibberellic acid</topic><topic>Growth regulators</topic><topic>Indole-3-butyric acid</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Morus indica</topic><topic>Organogenesis</topic><topic>Original Article</topic><topic>Plant Anatomy/Development</topic><topic>Plant growth</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plantlets</topic><topic>Putrescine</topic><topic>Regeneration</topic><topic>Robustness</topic><topic>Rooting</topic><topic>Seed Biology and Micropropagation</topic><topic>Seedlings</topic><topic>Shoots</topic><topic>Silkworms</topic><topic>Silver</topic><topic>Silver nitrate</topic><topic>Thidiazuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Tanmoy</creatorcontrib><creatorcontrib>Ravindra, K. N.</creatorcontrib><creatorcontrib>Doss, S. Gandhi</creatorcontrib><creatorcontrib>Kumar, P. M. Pratheesh</creatorcontrib><creatorcontrib>Tewary, Pankaj</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><jtitle>Trees (Berlin, West)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Tanmoy</au><au>Ravindra, K. N.</au><au>Doss, S. Gandhi</au><au>Kumar, P. M. Pratheesh</au><au>Tewary, Pankaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis</atitle><jtitle>Trees (Berlin, West)</jtitle><stitle>Trees</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><spage>113</spage><epage>125</epage><pages>113-125</pages><issn>0931-1890</issn><eissn>1432-2285</eissn><abstract>Key message An efficient, high-frequency, and robust in vitro regeneration protocol was developed using cotyledon and hypocotyl explants from mulberry ( Morus indica cv. G4) seedlings. Mulberry ( Morus ) is a perennial tree species with a wide range of commercial applications. Its leaves are predominantly used for feeding the monophagous silkworm ( Bombyx mori L.) globally. In this study, the effects of plant growth regulators, additives and elevated levels of macronutrients, on in vitro adventitious shoot induction, shoot elongation, and rooting, were investigated. It was found that modified Murashige and Skoog (MS) medium supplemented with thidiazuron (0.5 mg/L) provided the most suitable medium for adventitious shoot bud induction, with a regeneration frequency of 88.62%, and yielded adventitious shoot buds of 10.60 ± 0.30 per cotyledon explant. Additionally, the MS medium fortified with 6-benzylaminopurine (1.0 mg/L), gibberellic acid (1.5 mg/L) , silver nitrate (2 mg/L), putrescine dihydrochloride (1 mg/L), activated charcoal (AC, 0.2%), and supplementary dosage of calcium chloride (515 mg/L) resulted in the highest frequency of shoot elongation, spontaneous root induction, and the longest shoot length. In this medium, no hyperhydricity of regenerated shoots/leaves was observed. We observed the longest adventitious root length and secondary root length of the shoots grown on MS medium supplemented with indole-3-butyric acid (2 mg/L) and AC (0.2%). The frequencies of ex vitro survival of plantlets after hardening were 90–95% and 95–100%, under laboratory and field-like conditions, respectively. Even though in vitro regeneration protocol in mulberry is genotype-dependent and explant-specific, the robust regeneration protocol developed in this study could find its applications in genome editing and genetic transformation using cotyledon and hypocotyl explants of other cultivars.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00468-021-02186-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1885-2864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0931-1890
ispartof Trees (Berlin, West), 2022-02, Vol.36 (1), p.113-125
issn 0931-1890
1432-2285
language eng
recordid cdi_proquest_journals_2633338094
source SpringerLink Journals - AutoHoldings
subjects Activated carbon
Activated charcoal
Additives
Agriculture
Biomedical and Life Sciences
Bombyx mori
Butyric acid
Calcium chloride
Charcoal
Cultivars
Elongation
Explants
Forestry
Genetic transformation
Genomes
Genotypes
Gibberellic acid
Growth regulators
Indole-3-butyric acid
Leaves
Life Sciences
Morus indica
Organogenesis
Original Article
Plant Anatomy/Development
Plant growth
Plant Pathology
Plant Physiology
Plant Sciences
Plant species
Plantlets
Putrescine
Regeneration
Robustness
Rooting
Seed Biology and Micropropagation
Seedlings
Shoots
Silkworms
Silver
Silver nitrate
Thidiazuron
title In vitro regeneration of mulberry plants from seedling explants of Morus indica cv. G4 through direct organogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20regeneration%20of%20mulberry%20plants%20from%20seedling%20explants%20of%20Morus%20indica%20cv.%20G4%20through%20direct%20organogenesis&rft.jtitle=Trees%20(Berlin,%20West)&rft.au=Sarkar,%20Tanmoy&rft.date=2022-02-01&rft.volume=36&rft.issue=1&rft.spage=113&rft.epage=125&rft.pages=113-125&rft.issn=0931-1890&rft.eissn=1432-2285&rft_id=info:doi/10.1007/s00468-021-02186-9&rft_dat=%3Cproquest_cross%3E2633338094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633338094&rft_id=info:pmid/&rfr_iscdi=true