Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion

Currently, robotic grasping methods based on sparse partial point clouds have attained excellent grasping performance on various objects. However, they often generate wrong grasping candidates due to the lack of geometric information on the object. In this work, we propose a novel and robust sparse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2022-03, Vol.104 (3), Article 45
Hauptverfasser: Chen, Wenkai, Liang, Hongzhuo, Chen, Zhaopeng, Sun, Fuchun, Zhang, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of intelligent & robotic systems
container_volume 104
creator Chen, Wenkai
Liang, Hongzhuo
Chen, Zhaopeng
Sun, Fuchun
Zhang, Jianwei
description Currently, robotic grasping methods based on sparse partial point clouds have attained excellent grasping performance on various objects. However, they often generate wrong grasping candidates due to the lack of geometric information on the object. In this work, we propose a novel and robust sparse shape completion model (TransSC). This model has a transformer-based encoder to explore more point-wise features and a manifold-based decoder to exploit more object details using a segmented partial point cloud as input. Quantitative experiments verify the effectiveness of the proposed shape completion network and demonstrate that our network outperforms existing methods. Besides, TransSC is integrated into a grasp evaluation network to generate a set of grasp candidates. The simulation experiment shows that TransSC improves the grasping generation result compared to the existing shape completion baselines. Furthermore, our robotic experiment shows that with TransSC, the robot is more successful in grasping objects of unknown numbers randomly placed on a support surface.
doi_str_mv 10.1007/s10846-022-01586-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2633338000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729523795</galeid><sourcerecordid>A729523795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1e7eb839d350fe83bc226b641332ef4d3c33620ce1fb0358829577ae463d714f3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjB7oydO109LAtL9PQFwQSSLoWsjxKHWLLlZxA_75KXeiu0kIwuufOzCXkjsKUAhQPgYIUeQqMpUAzmafijExoVvAUBJTnZAIlo_G7zC_JVQg7AChlVk7I6q3tvTs23TZZVjs0Q_LideiTFXrrfKs7g8mx0cnG6y6cKujTRx2wTta99gGT9YfuMZm7tt_j0LjuhlxYvQ94-_tek_fnp838NV0sX97ms0VqBLAhpVhgJXlZ8wwsSl4ZxvIqF5RzhlbU3HCeMzBIbQU8k5KVWVFoFDmvCyosvyb3o28c__OAYVA7d_BdbKlYzuORcceomo6qrd6jajrrBq9NvDW2jXEd2ibWZ0V0Z7woswiwETDeheDRqt43rfZfioI6Ra3GqFWMWv1ErUSE-AiFKO626P9m-Yf6BjYlgAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633338000</pqid></control><display><type>article</type><title>Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion</title><source>SpringerLink</source><creator>Chen, Wenkai ; Liang, Hongzhuo ; Chen, Zhaopeng ; Sun, Fuchun ; Zhang, Jianwei</creator><creatorcontrib>Chen, Wenkai ; Liang, Hongzhuo ; Chen, Zhaopeng ; Sun, Fuchun ; Zhang, Jianwei</creatorcontrib><description>Currently, robotic grasping methods based on sparse partial point clouds have attained excellent grasping performance on various objects. However, they often generate wrong grasping candidates due to the lack of geometric information on the object. In this work, we propose a novel and robust sparse shape completion model (TransSC). This model has a transformer-based encoder to explore more point-wise features and a manifold-based decoder to exploit more object details using a segmented partial point cloud as input. Quantitative experiments verify the effectiveness of the proposed shape completion network and demonstrate that our network outperforms existing methods. Besides, TransSC is integrated into a grasp evaluation network to generate a set of grasp candidates. The simulation experiment shows that TransSC improves the grasping generation result compared to the existing shape completion baselines. Furthermore, our robotic experiment shows that with TransSC, the robot is more successful in grasping objects of unknown numbers randomly placed on a support surface.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-022-01586-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Coders ; Control ; Datasets ; Deep learning ; Electrical Engineering ; Engineering ; Experiments ; Grasping (robotics) ; label V ; Mechanical Engineering ; Mechatronics ; Regular Paper ; Robotics ; Robots ; Semantics ; Sensors ; Simulation ; Topical collection on Robotics Vision and Intelligent Control ; Transformers</subject><ispartof>Journal of intelligent &amp; robotic systems, 2022-03, Vol.104 (3), Article 45</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1e7eb839d350fe83bc226b641332ef4d3c33620ce1fb0358829577ae463d714f3</citedby><cites>FETCH-LOGICAL-c402t-1e7eb839d350fe83bc226b641332ef4d3c33620ce1fb0358829577ae463d714f3</cites><orcidid>0000-0002-6870-9898 ; 0000-0003-0169-8896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-022-01586-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-022-01586-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Chen, Wenkai</creatorcontrib><creatorcontrib>Liang, Hongzhuo</creatorcontrib><creatorcontrib>Chen, Zhaopeng</creatorcontrib><creatorcontrib>Sun, Fuchun</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><title>Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Currently, robotic grasping methods based on sparse partial point clouds have attained excellent grasping performance on various objects. However, they often generate wrong grasping candidates due to the lack of geometric information on the object. In this work, we propose a novel and robust sparse shape completion model (TransSC). This model has a transformer-based encoder to explore more point-wise features and a manifold-based decoder to exploit more object details using a segmented partial point cloud as input. Quantitative experiments verify the effectiveness of the proposed shape completion network and demonstrate that our network outperforms existing methods. Besides, TransSC is integrated into a grasp evaluation network to generate a set of grasp candidates. The simulation experiment shows that TransSC improves the grasping generation result compared to the existing shape completion baselines. Furthermore, our robotic experiment shows that with TransSC, the robot is more successful in grasping objects of unknown numbers randomly placed on a support surface.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Coders</subject><subject>Control</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Grasping (robotics)</subject><subject>label V</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Robots</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Topical collection on Robotics Vision and Intelligent Control</subject><subject>Transformers</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtqwzAQRUVpoenjB7oydO109LAtL9PQFwQSSLoWsjxKHWLLlZxA_75KXeiu0kIwuufOzCXkjsKUAhQPgYIUeQqMpUAzmafijExoVvAUBJTnZAIlo_G7zC_JVQg7AChlVk7I6q3tvTs23TZZVjs0Q_LideiTFXrrfKs7g8mx0cnG6y6cKujTRx2wTta99gGT9YfuMZm7tt_j0LjuhlxYvQ94-_tek_fnp838NV0sX97ms0VqBLAhpVhgJXlZ8wwsSl4ZxvIqF5RzhlbU3HCeMzBIbQU8k5KVWVFoFDmvCyosvyb3o28c__OAYVA7d_BdbKlYzuORcceomo6qrd6jajrrBq9NvDW2jXEd2ibWZ0V0Z7woswiwETDeheDRqt43rfZfioI6Ra3GqFWMWv1ErUSE-AiFKO626P9m-Yf6BjYlgAs</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Chen, Wenkai</creator><creator>Liang, Hongzhuo</creator><creator>Chen, Zhaopeng</creator><creator>Sun, Fuchun</creator><creator>Zhang, Jianwei</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6870-9898</orcidid><orcidid>https://orcid.org/0000-0003-0169-8896</orcidid></search><sort><creationdate>20220301</creationdate><title>Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion</title><author>Chen, Wenkai ; Liang, Hongzhuo ; Chen, Zhaopeng ; Sun, Fuchun ; Zhang, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1e7eb839d350fe83bc226b641332ef4d3c33620ce1fb0358829577ae463d714f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Coders</topic><topic>Control</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Grasping (robotics)</topic><topic>label V</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Robots</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Topical collection on Robotics Vision and Intelligent Control</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenkai</creatorcontrib><creatorcontrib>Liang, Hongzhuo</creatorcontrib><creatorcontrib>Chen, Zhaopeng</creatorcontrib><creatorcontrib>Sun, Fuchun</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenkai</au><au>Liang, Hongzhuo</au><au>Chen, Zhaopeng</au><au>Sun, Fuchun</au><au>Zhang, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>104</volume><issue>3</issue><artnum>45</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Currently, robotic grasping methods based on sparse partial point clouds have attained excellent grasping performance on various objects. However, they often generate wrong grasping candidates due to the lack of geometric information on the object. In this work, we propose a novel and robust sparse shape completion model (TransSC). This model has a transformer-based encoder to explore more point-wise features and a manifold-based decoder to exploit more object details using a segmented partial point cloud as input. Quantitative experiments verify the effectiveness of the proposed shape completion network and demonstrate that our network outperforms existing methods. Besides, TransSC is integrated into a grasp evaluation network to generate a set of grasp candidates. The simulation experiment shows that TransSC improves the grasping generation result compared to the existing shape completion baselines. Furthermore, our robotic experiment shows that with TransSC, the robot is more successful in grasping objects of unknown numbers randomly placed on a support surface.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-022-01586-4</doi><orcidid>https://orcid.org/0000-0002-6870-9898</orcidid><orcidid>https://orcid.org/0000-0003-0169-8896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2022-03, Vol.104 (3), Article 45
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2633338000
source SpringerLink
subjects Algorithms
Analysis
Artificial Intelligence
Coders
Control
Datasets
Deep learning
Electrical Engineering
Engineering
Experiments
Grasping (robotics)
label V
Mechanical Engineering
Mechatronics
Regular Paper
Robotics
Robots
Semantics
Sensors
Simulation
Topical collection on Robotics Vision and Intelligent Control
Transformers
title Improving Object Grasp Performance via Transformer-Based Sparse Shape Completion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Object%20Grasp%20Performance%20via%20Transformer-Based%20Sparse%20Shape%20Completion&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Chen,%20Wenkai&rft.date=2022-03-01&rft.volume=104&rft.issue=3&rft.artnum=45&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-022-01586-4&rft_dat=%3Cgale_proqu%3EA729523795%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633338000&rft_id=info:pmid/&rft_galeid=A729523795&rfr_iscdi=true