A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System

Several studies have concentrated on cooling the PV module temperature (TPV) to enhance the system’s electrical output power and efficiency in recent years. In this review study, PCM-based cooling techniques are reviewed majorly classified into three techniques: (i) incorporating raw/pure PCM behind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-02, Vol.14 (4), p.1963
Hauptverfasser: Velmurugan, Karthikeyan, Elavarasan, Rajvikram Madurai, De, Pham Van, Karthikeyan, Vaithinathan, Korukonda, Tulja Bhavani, Dhanraj, Joshuva Arockia, Emsaeng, Kanchanok, Chowdhury, Md. Shahariar, Techato, Kuaanan, El Khier, Bothaina Samih Abou, Attia, El-Awady
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 1963
container_title Sustainability
container_volume 14
creator Velmurugan, Karthikeyan
Elavarasan, Rajvikram Madurai
De, Pham Van
Karthikeyan, Vaithinathan
Korukonda, Tulja Bhavani
Dhanraj, Joshuva Arockia
Emsaeng, Kanchanok
Chowdhury, Md. Shahariar
Techato, Kuaanan
El Khier, Bothaina Samih Abou
Attia, El-Awady
description Several studies have concentrated on cooling the PV module temperature (TPV) to enhance the system’s electrical output power and efficiency in recent years. In this review study, PCM-based cooling techniques are reviewed majorly classified into three techniques: (i) incorporating raw/pure PCM behind the PV module is one of the most straightforward techniques; (ii) thermal additives such as inter-fin, nano-compound, expanded graphite (EG), and others are infused in PCM to enhance the heat transfer rate between PV module and PCM; and (iii) thermal collectors that are placed behind the PV module or inside the PCM container to minimize the PCM usage. Advantageously, these techniques favor reusing the waste heat from the PV module. Further, in this study, PCM thermophysical properties are straightforwardly discussed. It is found that the PCM melting temperature (Tmelt) and thermal conductivity (KPCM) become the major concerns in cooling the PV module. Based on the literature review, experimentally proven PV-PCM temperatures are analyzed over a year for UAE and Islamabad locations using typical meteorological year (TMY) data from the National Renewable Energy Laboratory (NREL) data source in 1 h frequency.
doi_str_mv 10.3390/su14041963
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633332358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633332358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-9e8ed920a0241516c14306e5d6497566f8aac71d5112ee27d549709805be3de03</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsNRufIIBd0J0fjKTzLKGaoWKYtRtGDM3NSXN1JlEKW58CJ_QJ3FCBb2bc7j38F04CB1Tcsa5Iue-pzGJqZJ8D40YSWhEiSD7__whmni_ImE4p4rKEfqY4nt4q-Ed2wrPQXf4QncduBp8cB4MvnvCN9b0DeDM2qZul9-fX1m44LzrzRCzLb4DV1m31m0JeNa-DLqGthuYC-2WEOWlDoDcNtoNwHzrO1gfoYNKNx4mvzpGj5ezh2weLW6vrrPpIiqZEl2kIAWjGNGExVRQWdKYEwnCyFglQsoq1bpMqBGUMgCWGBH2RKVEPAM3QPgYney4G2dfe_BdsbK9a8PLgkkehnGRhtTpLlU6672Dqti4eq3dtqCkGPot_vrlPwvdbDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633332358</pqid></control><display><type>article</type><title>A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Velmurugan, Karthikeyan ; Elavarasan, Rajvikram Madurai ; De, Pham Van ; Karthikeyan, Vaithinathan ; Korukonda, Tulja Bhavani ; Dhanraj, Joshuva Arockia ; Emsaeng, Kanchanok ; Chowdhury, Md. Shahariar ; Techato, Kuaanan ; El Khier, Bothaina Samih Abou ; Attia, El-Awady</creator><creatorcontrib>Velmurugan, Karthikeyan ; Elavarasan, Rajvikram Madurai ; De, Pham Van ; Karthikeyan, Vaithinathan ; Korukonda, Tulja Bhavani ; Dhanraj, Joshuva Arockia ; Emsaeng, Kanchanok ; Chowdhury, Md. Shahariar ; Techato, Kuaanan ; El Khier, Bothaina Samih Abou ; Attia, El-Awady</creatorcontrib><description>Several studies have concentrated on cooling the PV module temperature (TPV) to enhance the system’s electrical output power and efficiency in recent years. In this review study, PCM-based cooling techniques are reviewed majorly classified into three techniques: (i) incorporating raw/pure PCM behind the PV module is one of the most straightforward techniques; (ii) thermal additives such as inter-fin, nano-compound, expanded graphite (EG), and others are infused in PCM to enhance the heat transfer rate between PV module and PCM; and (iii) thermal collectors that are placed behind the PV module or inside the PCM container to minimize the PCM usage. Advantageously, these techniques favor reusing the waste heat from the PV module. Further, in this study, PCM thermophysical properties are straightforwardly discussed. It is found that the PCM melting temperature (Tmelt) and thermal conductivity (KPCM) become the major concerns in cooling the PV module. Based on the literature review, experimentally proven PV-PCM temperatures are analyzed over a year for UAE and Islamabad locations using typical meteorological year (TMY) data from the National Renewable Energy Laboratory (NREL) data source in 1 h frequency.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14041963</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Alternative energy sources ; Cooling ; Efficiency ; Energy resources ; Groundwater ; Heat ; Heat transfer ; Literature reviews ; Melt temperature ; Payback periods ; Radiation ; Sustainability ; Thermal conductivity ; Thermal energy ; Thermophysical properties</subject><ispartof>Sustainability, 2022-02, Vol.14 (4), p.1963</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-9e8ed920a0241516c14306e5d6497566f8aac71d5112ee27d549709805be3de03</citedby><cites>FETCH-LOGICAL-c295t-9e8ed920a0241516c14306e5d6497566f8aac71d5112ee27d549709805be3de03</cites><orcidid>0000-0002-7744-6102 ; 0000-0001-5048-7775 ; 0000-0003-1321-1176 ; 0000-0003-2703-1969 ; 0000-0001-6734-8448 ; 0000-0002-9178-8416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Velmurugan, Karthikeyan</creatorcontrib><creatorcontrib>Elavarasan, Rajvikram Madurai</creatorcontrib><creatorcontrib>De, Pham Van</creatorcontrib><creatorcontrib>Karthikeyan, Vaithinathan</creatorcontrib><creatorcontrib>Korukonda, Tulja Bhavani</creatorcontrib><creatorcontrib>Dhanraj, Joshuva Arockia</creatorcontrib><creatorcontrib>Emsaeng, Kanchanok</creatorcontrib><creatorcontrib>Chowdhury, Md. Shahariar</creatorcontrib><creatorcontrib>Techato, Kuaanan</creatorcontrib><creatorcontrib>El Khier, Bothaina Samih Abou</creatorcontrib><creatorcontrib>Attia, El-Awady</creatorcontrib><title>A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System</title><title>Sustainability</title><description>Several studies have concentrated on cooling the PV module temperature (TPV) to enhance the system’s electrical output power and efficiency in recent years. In this review study, PCM-based cooling techniques are reviewed majorly classified into three techniques: (i) incorporating raw/pure PCM behind the PV module is one of the most straightforward techniques; (ii) thermal additives such as inter-fin, nano-compound, expanded graphite (EG), and others are infused in PCM to enhance the heat transfer rate between PV module and PCM; and (iii) thermal collectors that are placed behind the PV module or inside the PCM container to minimize the PCM usage. Advantageously, these techniques favor reusing the waste heat from the PV module. Further, in this study, PCM thermophysical properties are straightforwardly discussed. It is found that the PCM melting temperature (Tmelt) and thermal conductivity (KPCM) become the major concerns in cooling the PV module. Based on the literature review, experimentally proven PV-PCM temperatures are analyzed over a year for UAE and Islamabad locations using typical meteorological year (TMY) data from the National Renewable Energy Laboratory (NREL) data source in 1 h frequency.</description><subject>Additives</subject><subject>Alternative energy sources</subject><subject>Cooling</subject><subject>Efficiency</subject><subject>Energy resources</subject><subject>Groundwater</subject><subject>Heat</subject><subject>Heat transfer</subject><subject>Literature reviews</subject><subject>Melt temperature</subject><subject>Payback periods</subject><subject>Radiation</subject><subject>Sustainability</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermophysical properties</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkM1Kw0AUhQdRsNRufIIBd0J0fjKTzLKGaoWKYtRtGDM3NSXN1JlEKW58CJ_QJ3FCBb2bc7j38F04CB1Tcsa5Iue-pzGJqZJ8D40YSWhEiSD7__whmni_ImE4p4rKEfqY4nt4q-Ed2wrPQXf4QncduBp8cB4MvnvCN9b0DeDM2qZul9-fX1m44LzrzRCzLb4DV1m31m0JeNa-DLqGthuYC-2WEOWlDoDcNtoNwHzrO1gfoYNKNx4mvzpGj5ezh2weLW6vrrPpIiqZEl2kIAWjGNGExVRQWdKYEwnCyFglQsoq1bpMqBGUMgCWGBH2RKVEPAM3QPgYney4G2dfe_BdsbK9a8PLgkkehnGRhtTpLlU6672Dqti4eq3dtqCkGPot_vrlPwvdbDE</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Velmurugan, Karthikeyan</creator><creator>Elavarasan, Rajvikram Madurai</creator><creator>De, Pham Van</creator><creator>Karthikeyan, Vaithinathan</creator><creator>Korukonda, Tulja Bhavani</creator><creator>Dhanraj, Joshuva Arockia</creator><creator>Emsaeng, Kanchanok</creator><creator>Chowdhury, Md. Shahariar</creator><creator>Techato, Kuaanan</creator><creator>El Khier, Bothaina Samih Abou</creator><creator>Attia, El-Awady</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7744-6102</orcidid><orcidid>https://orcid.org/0000-0001-5048-7775</orcidid><orcidid>https://orcid.org/0000-0003-1321-1176</orcidid><orcidid>https://orcid.org/0000-0003-2703-1969</orcidid><orcidid>https://orcid.org/0000-0001-6734-8448</orcidid><orcidid>https://orcid.org/0000-0002-9178-8416</orcidid></search><sort><creationdate>20220201</creationdate><title>A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System</title><author>Velmurugan, Karthikeyan ; Elavarasan, Rajvikram Madurai ; De, Pham Van ; Karthikeyan, Vaithinathan ; Korukonda, Tulja Bhavani ; Dhanraj, Joshuva Arockia ; Emsaeng, Kanchanok ; Chowdhury, Md. Shahariar ; Techato, Kuaanan ; El Khier, Bothaina Samih Abou ; Attia, El-Awady</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-9e8ed920a0241516c14306e5d6497566f8aac71d5112ee27d549709805be3de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Alternative energy sources</topic><topic>Cooling</topic><topic>Efficiency</topic><topic>Energy resources</topic><topic>Groundwater</topic><topic>Heat</topic><topic>Heat transfer</topic><topic>Literature reviews</topic><topic>Melt temperature</topic><topic>Payback periods</topic><topic>Radiation</topic><topic>Sustainability</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermophysical properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velmurugan, Karthikeyan</creatorcontrib><creatorcontrib>Elavarasan, Rajvikram Madurai</creatorcontrib><creatorcontrib>De, Pham Van</creatorcontrib><creatorcontrib>Karthikeyan, Vaithinathan</creatorcontrib><creatorcontrib>Korukonda, Tulja Bhavani</creatorcontrib><creatorcontrib>Dhanraj, Joshuva Arockia</creatorcontrib><creatorcontrib>Emsaeng, Kanchanok</creatorcontrib><creatorcontrib>Chowdhury, Md. Shahariar</creatorcontrib><creatorcontrib>Techato, Kuaanan</creatorcontrib><creatorcontrib>El Khier, Bothaina Samih Abou</creatorcontrib><creatorcontrib>Attia, El-Awady</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velmurugan, Karthikeyan</au><au>Elavarasan, Rajvikram Madurai</au><au>De, Pham Van</au><au>Karthikeyan, Vaithinathan</au><au>Korukonda, Tulja Bhavani</au><au>Dhanraj, Joshuva Arockia</au><au>Emsaeng, Kanchanok</au><au>Chowdhury, Md. Shahariar</au><au>Techato, Kuaanan</au><au>El Khier, Bothaina Samih Abou</au><au>Attia, El-Awady</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System</atitle><jtitle>Sustainability</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>4</issue><spage>1963</spage><pages>1963-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Several studies have concentrated on cooling the PV module temperature (TPV) to enhance the system’s electrical output power and efficiency in recent years. In this review study, PCM-based cooling techniques are reviewed majorly classified into three techniques: (i) incorporating raw/pure PCM behind the PV module is one of the most straightforward techniques; (ii) thermal additives such as inter-fin, nano-compound, expanded graphite (EG), and others are infused in PCM to enhance the heat transfer rate between PV module and PCM; and (iii) thermal collectors that are placed behind the PV module or inside the PCM container to minimize the PCM usage. Advantageously, these techniques favor reusing the waste heat from the PV module. Further, in this study, PCM thermophysical properties are straightforwardly discussed. It is found that the PCM melting temperature (Tmelt) and thermal conductivity (KPCM) become the major concerns in cooling the PV module. Based on the literature review, experimentally proven PV-PCM temperatures are analyzed over a year for UAE and Islamabad locations using typical meteorological year (TMY) data from the National Renewable Energy Laboratory (NREL) data source in 1 h frequency.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14041963</doi><orcidid>https://orcid.org/0000-0002-7744-6102</orcidid><orcidid>https://orcid.org/0000-0001-5048-7775</orcidid><orcidid>https://orcid.org/0000-0003-1321-1176</orcidid><orcidid>https://orcid.org/0000-0003-2703-1969</orcidid><orcidid>https://orcid.org/0000-0001-6734-8448</orcidid><orcidid>https://orcid.org/0000-0002-9178-8416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-02, Vol.14 (4), p.1963
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2633332358
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Additives
Alternative energy sources
Cooling
Efficiency
Energy resources
Groundwater
Heat
Heat transfer
Literature reviews
Melt temperature
Payback periods
Radiation
Sustainability
Thermal conductivity
Thermal energy
Thermophysical properties
title A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A39%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Heat%20Batteries%20Based%20PV%20Module%20Cooling%E2%80%94Case%20Studies%20on%20Performance%20Enhancement%20of%20Large-Scale%20Solar%20PV%20System&rft.jtitle=Sustainability&rft.au=Velmurugan,%20Karthikeyan&rft.date=2022-02-01&rft.volume=14&rft.issue=4&rft.spage=1963&rft.pages=1963-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14041963&rft_dat=%3Cproquest_cross%3E2633332358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633332358&rft_id=info:pmid/&rfr_iscdi=true