An optimal statistical and computational framework for generalized tensor estimation
This paper describes a flexible framework for generalized low-rank tensor estimation problems that includes many important instances arising from applications in computational imaging, genomics, and network analysis. The proposed estimator consists of finding a low-rank tensor fit to the data under...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2022-02, Vol.50 (1), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | The Annals of statistics |
container_volume | 50 |
creator | Han, Rungang Willett, Rebecca Zhang, Anru R. |
description | This paper describes a flexible framework for generalized low-rank tensor estimation problems that includes many important instances arising from applications in computational imaging, genomics, and network analysis. The proposed estimator consists of finding a low-rank tensor fit to the data under generalized parametric models. To overcome the difficulty of nonconvexity in these problems, we introduce a unified approach of projected gradient descent that adapts to the underlying low-rank structure. Under mild conditions on the loss function, we establish both an upper bound on statistical error and the linear rate of computational convergence through a general deterministic analysis. Then we further consider a suite of generalized tensor estimation problems, including sub-Gaussian tensor PCA, tensor regression, and Poisson and binomial tensor PCA. We prove that the proposed algorithm achieves the minimax optimal rate of convergence in estimation error. Finally, we demonstrate the superiority of the proposed framework via extensive experiments on both simulated and real data. |
doi_str_mv | 10.1214/21-AOS2061 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633263582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633263582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-24331aff5ca66164209e1c5a2992b36c787b5c69e257f2ba61a7125a157c8a5c3</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMoWKsXP8GCN2E1M9lkN8dS_AeFHqznME0T2dpu1mSL6Kc3S3sYZvjxePN4jN0CfwCE6hGhnC3fkSs4YxME1ZSNVuqcTTjXvJRCVZfsKqUt51zqSkzYatYVoR_aPe2KNNDQpqG1-aZuU9iw7w8jC10mPtLe_YT4VfgQi0_XuUi79s9tisF1KSOXRptRfc0uPO2SuzntKft4flrNX8vF8uVtPluUFqUeSqyEAPJeWlIKVIVcO7CSUGtcC2Xrpl5Lq7RDWXtckwKqASWBrG1D0oopuzv69jF8H_J_sw2HmMMmg0qIPLLBrLo_qmwMKUXnTR9z0PhrgJuxNYNgTq2Jfy9tX5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633263582</pqid></control><display><type>article</type><title>An optimal statistical and computational framework for generalized tensor estimation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Han, Rungang ; Willett, Rebecca ; Zhang, Anru R.</creator><creatorcontrib>Han, Rungang ; Willett, Rebecca ; Zhang, Anru R.</creatorcontrib><description>This paper describes a flexible framework for generalized low-rank tensor estimation problems that includes many important instances arising from applications in computational imaging, genomics, and network analysis. The proposed estimator consists of finding a low-rank tensor fit to the data under generalized parametric models. To overcome the difficulty of nonconvexity in these problems, we introduce a unified approach of projected gradient descent that adapts to the underlying low-rank structure. Under mild conditions on the loss function, we establish both an upper bound on statistical error and the linear rate of computational convergence through a general deterministic analysis. Then we further consider a suite of generalized tensor estimation problems, including sub-Gaussian tensor PCA, tensor regression, and Poisson and binomial tensor PCA. We prove that the proposed algorithm achieves the minimax optimal rate of convergence in estimation error. Finally, we demonstrate the superiority of the proposed framework via extensive experiments on both simulated and real data.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/21-AOS2061</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Algorithms ; Convergence ; Estimating techniques ; Fluid dynamics ; Linear equations ; Mathematical analysis ; Mathematics ; Minimax technique ; Network analysis ; Statistical analysis ; Tensors ; Upper bounds</subject><ispartof>The Annals of statistics, 2022-02, Vol.50 (1), p.1</ispartof><rights>Copyright Institute of Mathematical Statistics Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-24331aff5ca66164209e1c5a2992b36c787b5c69e257f2ba61a7125a157c8a5c3</citedby><cites>FETCH-LOGICAL-c259t-24331aff5ca66164209e1c5a2992b36c787b5c69e257f2ba61a7125a157c8a5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Rungang</creatorcontrib><creatorcontrib>Willett, Rebecca</creatorcontrib><creatorcontrib>Zhang, Anru R.</creatorcontrib><title>An optimal statistical and computational framework for generalized tensor estimation</title><title>The Annals of statistics</title><description>This paper describes a flexible framework for generalized low-rank tensor estimation problems that includes many important instances arising from applications in computational imaging, genomics, and network analysis. The proposed estimator consists of finding a low-rank tensor fit to the data under generalized parametric models. To overcome the difficulty of nonconvexity in these problems, we introduce a unified approach of projected gradient descent that adapts to the underlying low-rank structure. Under mild conditions on the loss function, we establish both an upper bound on statistical error and the linear rate of computational convergence through a general deterministic analysis. Then we further consider a suite of generalized tensor estimation problems, including sub-Gaussian tensor PCA, tensor regression, and Poisson and binomial tensor PCA. We prove that the proposed algorithm achieves the minimax optimal rate of convergence in estimation error. Finally, we demonstrate the superiority of the proposed framework via extensive experiments on both simulated and real data.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Estimating techniques</subject><subject>Fluid dynamics</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Minimax technique</subject><subject>Network analysis</subject><subject>Statistical analysis</subject><subject>Tensors</subject><subject>Upper bounds</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE9LAzEQxYMoWKsXP8GCN2E1M9lkN8dS_AeFHqznME0T2dpu1mSL6Kc3S3sYZvjxePN4jN0CfwCE6hGhnC3fkSs4YxME1ZSNVuqcTTjXvJRCVZfsKqUt51zqSkzYatYVoR_aPe2KNNDQpqG1-aZuU9iw7w8jC10mPtLe_YT4VfgQi0_XuUi79s9tisF1KSOXRptRfc0uPO2SuzntKft4flrNX8vF8uVtPluUFqUeSqyEAPJeWlIKVIVcO7CSUGtcC2Xrpl5Lq7RDWXtckwKqASWBrG1D0oopuzv69jF8H_J_sw2HmMMmg0qIPLLBrLo_qmwMKUXnTR9z0PhrgJuxNYNgTq2Jfy9tX5E</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Han, Rungang</creator><creator>Willett, Rebecca</creator><creator>Zhang, Anru R.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20220201</creationdate><title>An optimal statistical and computational framework for generalized tensor estimation</title><author>Han, Rungang ; Willett, Rebecca ; Zhang, Anru R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-24331aff5ca66164209e1c5a2992b36c787b5c69e257f2ba61a7125a157c8a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Estimating techniques</topic><topic>Fluid dynamics</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Minimax technique</topic><topic>Network analysis</topic><topic>Statistical analysis</topic><topic>Tensors</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Rungang</creatorcontrib><creatorcontrib>Willett, Rebecca</creatorcontrib><creatorcontrib>Zhang, Anru R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Rungang</au><au>Willett, Rebecca</au><au>Zhang, Anru R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimal statistical and computational framework for generalized tensor estimation</atitle><jtitle>The Annals of statistics</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>50</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>This paper describes a flexible framework for generalized low-rank tensor estimation problems that includes many important instances arising from applications in computational imaging, genomics, and network analysis. The proposed estimator consists of finding a low-rank tensor fit to the data under generalized parametric models. To overcome the difficulty of nonconvexity in these problems, we introduce a unified approach of projected gradient descent that adapts to the underlying low-rank structure. Under mild conditions on the loss function, we establish both an upper bound on statistical error and the linear rate of computational convergence through a general deterministic analysis. Then we further consider a suite of generalized tensor estimation problems, including sub-Gaussian tensor PCA, tensor regression, and Poisson and binomial tensor PCA. We prove that the proposed algorithm achieves the minimax optimal rate of convergence in estimation error. Finally, we demonstrate the superiority of the proposed framework via extensive experiments on both simulated and real data.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/21-AOS2061</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2022-02, Vol.50 (1), p.1 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_proquest_journals_2633263582 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
subjects | Algorithms Convergence Estimating techniques Fluid dynamics Linear equations Mathematical analysis Mathematics Minimax technique Network analysis Statistical analysis Tensors Upper bounds |
title | An optimal statistical and computational framework for generalized tensor estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimal%20statistical%20and%20computational%20framework%20for%20generalized%20tensor%20estimation&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Han,%20Rungang&rft.date=2022-02-01&rft.volume=50&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/21-AOS2061&rft_dat=%3Cproquest_cross%3E2633263582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633263582&rft_id=info:pmid/&rfr_iscdi=true |