Robust parametric inference for finite Markov chains

We consider the problem of statistical inference in a parametric finite Markov chain model and develop a robust estimator of the parameters defining the transition probabilities via minimization of a suitable (empirical) version of the popular density power divergence. Based on a long sequence of ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2022-03, Vol.31 (1), p.118-147
1. Verfasser: Ghosh, Abhik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 118
container_title Test (Madrid, Spain)
container_volume 31
creator Ghosh, Abhik
description We consider the problem of statistical inference in a parametric finite Markov chain model and develop a robust estimator of the parameters defining the transition probabilities via minimization of a suitable (empirical) version of the popular density power divergence. Based on a long sequence of observations from a first-order stationary Markov chain, we have defined the minimum density power divergence estimator (MDPDE) of the underlying parameter and rigorously derived its asymptotic and robustness properties under appropriate conditions. Performance of the MDPDEs is illustrated theoretically as well as empirically for some common examples of finite Markov chain models. Its applications in robust testing of statistical hypotheses are also discussed along with (parametric) comparison of two Markov chain sequences. Several directions for extending the MDPDE and related inference are also briefly discussed for multiple sequences of Markov chains, higher order Markov chains and non-stationary Markov chains with time-dependent transition probabilities. Finally, our proposal is applied to analyze corporate credit rating migration data of three international markets.
doi_str_mv 10.1007/s11749-021-00771-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633261469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633261469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f7b7ad4e910fa7a4e370162bc14b7bcc90899549d826275487d3927de22e3e723</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouD7-gKcBz9HuJJtMjrL4ghVB9BwymY7O6s6syazgvzc6gjdP3Q1V1cXH2AnCGQKY84xolOUgkJfTIMcdNsNaS14LDbtlRyk56Frvs4OcVwBaaYEzph6GZpvHauOTX9OYulB1faREfaAqDqmKXd-NVN359Dp8VOHFd30-YnvRv2U6_p2H7Onq8nFxw5f317eLiyUPEuTIo2mMbxVZhOiNVyQNoBZNQNWYJgQLtbVzZdvSUZi5qk0rrTAtCUGSjJCH7HTK3aThfUt5dKthm_ry0gktpdCotC0qMalCGnJOFN0mdWufPh2C-6bjJjqu0HE_dBwWk5xMuYj7Z0p_0f-4vgCmzmYG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633261469</pqid></control><display><type>article</type><title>Robust parametric inference for finite Markov chains</title><source>Springer Nature - Complete Springer Journals</source><creator>Ghosh, Abhik</creator><creatorcontrib>Ghosh, Abhik</creatorcontrib><description>We consider the problem of statistical inference in a parametric finite Markov chain model and develop a robust estimator of the parameters defining the transition probabilities via minimization of a suitable (empirical) version of the popular density power divergence. Based on a long sequence of observations from a first-order stationary Markov chain, we have defined the minimum density power divergence estimator (MDPDE) of the underlying parameter and rigorously derived its asymptotic and robustness properties under appropriate conditions. Performance of the MDPDEs is illustrated theoretically as well as empirically for some common examples of finite Markov chain models. Its applications in robust testing of statistical hypotheses are also discussed along with (parametric) comparison of two Markov chain sequences. Several directions for extending the MDPDE and related inference are also briefly discussed for multiple sequences of Markov chains, higher order Markov chains and non-stationary Markov chains with time-dependent transition probabilities. Finally, our proposal is applied to analyze corporate credit rating migration data of three international markets.</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/s11749-021-00771-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Density ; Divergence ; Economics ; Empirical analysis ; Finance ; Insurance ; Management ; Markov analysis ; Markov chains ; Mathematical models ; Mathematics and Statistics ; Original Paper ; Parameter robustness ; Robustness ; Sequences ; Statistical inference ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Transition probabilities</subject><ispartof>Test (Madrid, Spain), 2022-03, Vol.31 (1), p.118-147</ispartof><rights>Sociedad de Estadística e Investigación Operativa 2021</rights><rights>Sociedad de Estadística e Investigación Operativa 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c303t-f7b7ad4e910fa7a4e370162bc14b7bcc90899549d826275487d3927de22e3e723</cites><orcidid>0000-0003-3688-4584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11749-021-00771-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11749-021-00771-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ghosh, Abhik</creatorcontrib><title>Robust parametric inference for finite Markov chains</title><title>Test (Madrid, Spain)</title><addtitle>TEST</addtitle><description>We consider the problem of statistical inference in a parametric finite Markov chain model and develop a robust estimator of the parameters defining the transition probabilities via minimization of a suitable (empirical) version of the popular density power divergence. Based on a long sequence of observations from a first-order stationary Markov chain, we have defined the minimum density power divergence estimator (MDPDE) of the underlying parameter and rigorously derived its asymptotic and robustness properties under appropriate conditions. Performance of the MDPDEs is illustrated theoretically as well as empirically for some common examples of finite Markov chain models. Its applications in robust testing of statistical hypotheses are also discussed along with (parametric) comparison of two Markov chain sequences. Several directions for extending the MDPDE and related inference are also briefly discussed for multiple sequences of Markov chains, higher order Markov chains and non-stationary Markov chains with time-dependent transition probabilities. Finally, our proposal is applied to analyze corporate credit rating migration data of three international markets.</description><subject>Asymptotic properties</subject><subject>Density</subject><subject>Divergence</subject><subject>Economics</subject><subject>Empirical analysis</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Parameter robustness</subject><subject>Robustness</subject><subject>Sequences</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Transition probabilities</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouD7-gKcBz9HuJJtMjrL4ghVB9BwymY7O6s6syazgvzc6gjdP3Q1V1cXH2AnCGQKY84xolOUgkJfTIMcdNsNaS14LDbtlRyk56Frvs4OcVwBaaYEzph6GZpvHauOTX9OYulB1faREfaAqDqmKXd-NVN359Dp8VOHFd30-YnvRv2U6_p2H7Onq8nFxw5f317eLiyUPEuTIo2mMbxVZhOiNVyQNoBZNQNWYJgQLtbVzZdvSUZi5qk0rrTAtCUGSjJCH7HTK3aThfUt5dKthm_ry0gktpdCotC0qMalCGnJOFN0mdWufPh2C-6bjJjqu0HE_dBwWk5xMuYj7Z0p_0f-4vgCmzmYG</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Ghosh, Abhik</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3688-4584</orcidid></search><sort><creationdate>20220301</creationdate><title>Robust parametric inference for finite Markov chains</title><author>Ghosh, Abhik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f7b7ad4e910fa7a4e370162bc14b7bcc90899549d826275487d3927de22e3e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Density</topic><topic>Divergence</topic><topic>Economics</topic><topic>Empirical analysis</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Parameter robustness</topic><topic>Robustness</topic><topic>Sequences</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Abhik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Abhik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust parametric inference for finite Markov chains</atitle><jtitle>Test (Madrid, Spain)</jtitle><stitle>TEST</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>31</volume><issue>1</issue><spage>118</spage><epage>147</epage><pages>118-147</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>We consider the problem of statistical inference in a parametric finite Markov chain model and develop a robust estimator of the parameters defining the transition probabilities via minimization of a suitable (empirical) version of the popular density power divergence. Based on a long sequence of observations from a first-order stationary Markov chain, we have defined the minimum density power divergence estimator (MDPDE) of the underlying parameter and rigorously derived its asymptotic and robustness properties under appropriate conditions. Performance of the MDPDEs is illustrated theoretically as well as empirically for some common examples of finite Markov chain models. Its applications in robust testing of statistical hypotheses are also discussed along with (parametric) comparison of two Markov chain sequences. Several directions for extending the MDPDE and related inference are also briefly discussed for multiple sequences of Markov chains, higher order Markov chains and non-stationary Markov chains with time-dependent transition probabilities. Finally, our proposal is applied to analyze corporate credit rating migration data of three international markets.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11749-021-00771-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-3688-4584</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2022-03, Vol.31 (1), p.118-147
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_journals_2633261469
source Springer Nature - Complete Springer Journals
subjects Asymptotic properties
Density
Divergence
Economics
Empirical analysis
Finance
Insurance
Management
Markov analysis
Markov chains
Mathematical models
Mathematics and Statistics
Original Paper
Parameter robustness
Robustness
Sequences
Statistical inference
Statistical Theory and Methods
Statistics
Statistics for Business
Transition probabilities
title Robust parametric inference for finite Markov chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20parametric%20inference%20for%20finite%20Markov%20chains&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Ghosh,%20Abhik&rft.date=2022-03-01&rft.volume=31&rft.issue=1&rft.spage=118&rft.epage=147&rft.pages=118-147&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/s11749-021-00771-1&rft_dat=%3Cproquest_cross%3E2633261469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633261469&rft_id=info:pmid/&rfr_iscdi=true