Sec-G Class of Distributions: Properties and Applications
Although there are many continuous distributions in the literature, only a handful take advantage of the modeling power provided by trigonometric functions. To our knowledge, none of them are based on the so-called secant function, defined as the reciprocal of the cosine function. The secant functio...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2022-02, Vol.14 (2), p.299 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 299 |
container_title | Symmetry (Basel) |
container_volume | 14 |
creator | Souza, Luciano de Oliveira, Wilson Rosa de Brito, Cícero Carlos Ramos Chesneau, Christophe Fernandes, Renan Ferreira, Tiago A. E. |
description | Although there are many continuous distributions in the literature, only a handful take advantage of the modeling power provided by trigonometric functions. To our knowledge, none of them are based on the so-called secant function, defined as the reciprocal of the cosine function. The secant function can go to large values whenever the cosine function goes to small values. The idea is to profit from this trigonometric property to modify well-known distribution tails and overall skewness features. With this in mind, in this paper, a new class of trigonometric distributions based on the secant function is introduced. It is called the Sec-G class. We discuss the main mathematical characteristics of this class, including series expansions of the corresponding cumulative distribution and probability density functions, as well as several probabilistic measures and functions. In particular, we present the moments, skewness, kurtosis, Lorenz, and Bonferroni curves, reliability coefficient, entropy measure, and order statistics. Throughout the study, emphasis is placed on the unique four-parameter continuous distribution of this class, defined with the Kumaraswamy-Weibull distribution as the baseline. The estimation of the model parameters is performed using the maximum likelihood method. We also carried out a numerical simulation study and present the results in graphic form. Three referenced datasets were analyzed, and it is proved that the proposed secant Kumaraswamy-Weibull model outperforms important competitors, including the Kumaraswamy-Weibull, Kumaraswamy-Weibull geometric, Kumaraswamy-Weibull Poisson, Kumaraswamy Burr XII, and Weibull models. |
doi_str_mv | 10.3390/sym14020299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633191569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633191569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-60a4ec93b8feff1d52f5b26b217c43f9c7d4edf583350c92b527e58d324f1c7b3</originalsourceid><addsrcrecordid>eNpNUM1KxDAYDKLgsu7JFwh4lGp-237elqqrsKCgnkOSJpCl29SkPezbW10PO5cZmGEGBqFrSu44B3KfD3sqCCMM4AwtGKl4UQOI8xN9iVY578gMSaQoyQLBh7PFBjedzhlHjx9DHlMw0xhinx_we4qDS2NwGeu-xeth6ILVf-YVuvC6y271z0v09fz02bwU27fNa7PeFpZBPRYl0cJZ4Kb2znvaSualYaVhtLKCe7BVK1zrZc25JBaYkaxysm45E57ayvAlujn2Dil-Ty6Pahen1M-TipWcU6CyhDl1e0zZFHNOzqshhb1OB0WJ-r1HndzDfwD8ilbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633191569</pqid></control><display><type>article</type><title>Sec-G Class of Distributions: Properties and Applications</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Souza, Luciano ; de Oliveira, Wilson Rosa ; de Brito, Cícero Carlos Ramos ; Chesneau, Christophe ; Fernandes, Renan ; Ferreira, Tiago A. E.</creator><creatorcontrib>Souza, Luciano ; de Oliveira, Wilson Rosa ; de Brito, Cícero Carlos Ramos ; Chesneau, Christophe ; Fernandes, Renan ; Ferreira, Tiago A. E.</creatorcontrib><description>Although there are many continuous distributions in the literature, only a handful take advantage of the modeling power provided by trigonometric functions. To our knowledge, none of them are based on the so-called secant function, defined as the reciprocal of the cosine function. The secant function can go to large values whenever the cosine function goes to small values. The idea is to profit from this trigonometric property to modify well-known distribution tails and overall skewness features. With this in mind, in this paper, a new class of trigonometric distributions based on the secant function is introduced. It is called the Sec-G class. We discuss the main mathematical characteristics of this class, including series expansions of the corresponding cumulative distribution and probability density functions, as well as several probabilistic measures and functions. In particular, we present the moments, skewness, kurtosis, Lorenz, and Bonferroni curves, reliability coefficient, entropy measure, and order statistics. Throughout the study, emphasis is placed on the unique four-parameter continuous distribution of this class, defined with the Kumaraswamy-Weibull distribution as the baseline. The estimation of the model parameters is performed using the maximum likelihood method. We also carried out a numerical simulation study and present the results in graphic form. Three referenced datasets were analyzed, and it is proved that the proposed secant Kumaraswamy-Weibull model outperforms important competitors, including the Kumaraswamy-Weibull, Kumaraswamy-Weibull geometric, Kumaraswamy-Weibull Poisson, Kumaraswamy Burr XII, and Weibull models.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym14020299</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Data analysis ; Kurtosis ; Linear equations ; Mathematical models ; Parameters ; Probability density functions ; Random variables ; Series expansion ; Skewness ; Statistical analysis ; Trigonometric functions ; Weibull distribution</subject><ispartof>Symmetry (Basel), 2022-02, Vol.14 (2), p.299</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-60a4ec93b8feff1d52f5b26b217c43f9c7d4edf583350c92b527e58d324f1c7b3</citedby><cites>FETCH-LOGICAL-c298t-60a4ec93b8feff1d52f5b26b217c43f9c7d4edf583350c92b527e58d324f1c7b3</cites><orcidid>0000-0002-2131-9825 ; 0000-0002-3261-8265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Souza, Luciano</creatorcontrib><creatorcontrib>de Oliveira, Wilson Rosa</creatorcontrib><creatorcontrib>de Brito, Cícero Carlos Ramos</creatorcontrib><creatorcontrib>Chesneau, Christophe</creatorcontrib><creatorcontrib>Fernandes, Renan</creatorcontrib><creatorcontrib>Ferreira, Tiago A. E.</creatorcontrib><title>Sec-G Class of Distributions: Properties and Applications</title><title>Symmetry (Basel)</title><description>Although there are many continuous distributions in the literature, only a handful take advantage of the modeling power provided by trigonometric functions. To our knowledge, none of them are based on the so-called secant function, defined as the reciprocal of the cosine function. The secant function can go to large values whenever the cosine function goes to small values. The idea is to profit from this trigonometric property to modify well-known distribution tails and overall skewness features. With this in mind, in this paper, a new class of trigonometric distributions based on the secant function is introduced. It is called the Sec-G class. We discuss the main mathematical characteristics of this class, including series expansions of the corresponding cumulative distribution and probability density functions, as well as several probabilistic measures and functions. In particular, we present the moments, skewness, kurtosis, Lorenz, and Bonferroni curves, reliability coefficient, entropy measure, and order statistics. Throughout the study, emphasis is placed on the unique four-parameter continuous distribution of this class, defined with the Kumaraswamy-Weibull distribution as the baseline. The estimation of the model parameters is performed using the maximum likelihood method. We also carried out a numerical simulation study and present the results in graphic form. Three referenced datasets were analyzed, and it is proved that the proposed secant Kumaraswamy-Weibull model outperforms important competitors, including the Kumaraswamy-Weibull, Kumaraswamy-Weibull geometric, Kumaraswamy-Weibull Poisson, Kumaraswamy Burr XII, and Weibull models.</description><subject>Data analysis</subject><subject>Kurtosis</subject><subject>Linear equations</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Probability density functions</subject><subject>Random variables</subject><subject>Series expansion</subject><subject>Skewness</subject><subject>Statistical analysis</subject><subject>Trigonometric functions</subject><subject>Weibull distribution</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUM1KxDAYDKLgsu7JFwh4lGp-237elqqrsKCgnkOSJpCl29SkPezbW10PO5cZmGEGBqFrSu44B3KfD3sqCCMM4AwtGKl4UQOI8xN9iVY578gMSaQoyQLBh7PFBjedzhlHjx9DHlMw0xhinx_we4qDS2NwGeu-xeth6ILVf-YVuvC6y271z0v09fz02bwU27fNa7PeFpZBPRYl0cJZ4Kb2znvaSualYaVhtLKCe7BVK1zrZc25JBaYkaxysm45E57ayvAlujn2Dil-Ty6Pahen1M-TipWcU6CyhDl1e0zZFHNOzqshhb1OB0WJ-r1HndzDfwD8ilbk</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Souza, Luciano</creator><creator>de Oliveira, Wilson Rosa</creator><creator>de Brito, Cícero Carlos Ramos</creator><creator>Chesneau, Christophe</creator><creator>Fernandes, Renan</creator><creator>Ferreira, Tiago A. E.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2131-9825</orcidid><orcidid>https://orcid.org/0000-0002-3261-8265</orcidid></search><sort><creationdate>20220201</creationdate><title>Sec-G Class of Distributions: Properties and Applications</title><author>Souza, Luciano ; de Oliveira, Wilson Rosa ; de Brito, Cícero Carlos Ramos ; Chesneau, Christophe ; Fernandes, Renan ; Ferreira, Tiago A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-60a4ec93b8feff1d52f5b26b217c43f9c7d4edf583350c92b527e58d324f1c7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data analysis</topic><topic>Kurtosis</topic><topic>Linear equations</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Probability density functions</topic><topic>Random variables</topic><topic>Series expansion</topic><topic>Skewness</topic><topic>Statistical analysis</topic><topic>Trigonometric functions</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souza, Luciano</creatorcontrib><creatorcontrib>de Oliveira, Wilson Rosa</creatorcontrib><creatorcontrib>de Brito, Cícero Carlos Ramos</creatorcontrib><creatorcontrib>Chesneau, Christophe</creatorcontrib><creatorcontrib>Fernandes, Renan</creatorcontrib><creatorcontrib>Ferreira, Tiago A. E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souza, Luciano</au><au>de Oliveira, Wilson Rosa</au><au>de Brito, Cícero Carlos Ramos</au><au>Chesneau, Christophe</au><au>Fernandes, Renan</au><au>Ferreira, Tiago A. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sec-G Class of Distributions: Properties and Applications</atitle><jtitle>Symmetry (Basel)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>14</volume><issue>2</issue><spage>299</spage><pages>299-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Although there are many continuous distributions in the literature, only a handful take advantage of the modeling power provided by trigonometric functions. To our knowledge, none of them are based on the so-called secant function, defined as the reciprocal of the cosine function. The secant function can go to large values whenever the cosine function goes to small values. The idea is to profit from this trigonometric property to modify well-known distribution tails and overall skewness features. With this in mind, in this paper, a new class of trigonometric distributions based on the secant function is introduced. It is called the Sec-G class. We discuss the main mathematical characteristics of this class, including series expansions of the corresponding cumulative distribution and probability density functions, as well as several probabilistic measures and functions. In particular, we present the moments, skewness, kurtosis, Lorenz, and Bonferroni curves, reliability coefficient, entropy measure, and order statistics. Throughout the study, emphasis is placed on the unique four-parameter continuous distribution of this class, defined with the Kumaraswamy-Weibull distribution as the baseline. The estimation of the model parameters is performed using the maximum likelihood method. We also carried out a numerical simulation study and present the results in graphic form. Three referenced datasets were analyzed, and it is proved that the proposed secant Kumaraswamy-Weibull model outperforms important competitors, including the Kumaraswamy-Weibull, Kumaraswamy-Weibull geometric, Kumaraswamy-Weibull Poisson, Kumaraswamy Burr XII, and Weibull models.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym14020299</doi><orcidid>https://orcid.org/0000-0002-2131-9825</orcidid><orcidid>https://orcid.org/0000-0002-3261-8265</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2022-02, Vol.14 (2), p.299 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2633191569 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Data analysis Kurtosis Linear equations Mathematical models Parameters Probability density functions Random variables Series expansion Skewness Statistical analysis Trigonometric functions Weibull distribution |
title | Sec-G Class of Distributions: Properties and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sec-G%20Class%20of%20Distributions:%20Properties%20and%20Applications&rft.jtitle=Symmetry%20(Basel)&rft.au=Souza,%20Luciano&rft.date=2022-02-01&rft.volume=14&rft.issue=2&rft.spage=299&rft.pages=299-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym14020299&rft_dat=%3Cproquest_cross%3E2633191569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633191569&rft_id=info:pmid/&rfr_iscdi=true |