Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations

Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Granular matter 2022-05, Vol.24 (2), Article 53
Hauptverfasser: Xu, Guowen, Gutierrez, Marte, Hou, Zhenkun, Li, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Granular matter
container_volume 24
creator Xu, Guowen
Gutierrez, Marte
Hou, Zhenkun
Li, Xing
description Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.
doi_str_mv 10.1007/s10035-022-01207-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633111737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633111737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeC1Ezvhhkp5SEVwgLPlOHZJlcbBdoT695imEjcuuyPtzOzuIHQJ5BoIETchVVZkhNKMACUiq47QDHKWZ4IzfnzABaFwis5C2BACRQVihtybd4Naq9i6Hqu-wdqpzgRtem2wszh-O9z2tu060-BBeZVAh61XOo7ehDTD4TMpbnGnaudVdH6Howmx7dd7v_vlCw7tduz2K8I5OrGqC-bi0Ofo42H5vnjKVq-Pz4u7VaYZVDErG83qgpuyykuuRNHwhC1LpRZclRZqA6RkucppepflNOdQNKUVYFhRMc3m6GryHbz7GtM9cuNG36eVknLGAEAwkVh0YmnvQvDGysG3W-V3Eoj8DVZOwcoUrNwHK6skYpMoJHK_Nv7P-h_VD7h-e5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633111737</pqid></control><display><type>article</type><title>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</title><source>SpringerNature Journals</source><creator>Xu, Guowen ; Gutierrez, Marte ; Hou, Zhenkun ; Li, Xing</creator><creatorcontrib>Xu, Guowen ; Gutierrez, Marte ; Hou, Zhenkun ; Li, Xing</creatorcontrib><description>Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-022-01207-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic emission ; Coalescing ; Complex Fluids and Microfluidics ; Crack propagation ; Discrete element method ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Foundations ; Fractures ; Geoengineering ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Laboratory tests ; Materials Science ; Mathematical analysis ; Mechanical properties ; Microcracks ; Normal distribution ; Original Paper ; Physics ; Physics and Astronomy ; Rock masses ; Shear strength ; Soft and Granular Matter ; Stress concentration ; Tensors</subject><ispartof>Granular matter, 2022-05, Vol.24 (2), Article 53</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</citedby><cites>FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-022-01207-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-022-01207-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Gutierrez, Marte</creatorcontrib><creatorcontrib>Hou, Zhenkun</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><title>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.</description><subject>Acoustic emission</subject><subject>Coalescing</subject><subject>Complex Fluids and Microfluidics</subject><subject>Crack propagation</subject><subject>Discrete element method</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Foundations</subject><subject>Fractures</subject><subject>Geoengineering</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laboratory tests</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rock masses</subject><subject>Shear strength</subject><subject>Soft and Granular Matter</subject><subject>Stress concentration</subject><subject>Tensors</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeC1Ezvhhkp5SEVwgLPlOHZJlcbBdoT695imEjcuuyPtzOzuIHQJ5BoIETchVVZkhNKMACUiq47QDHKWZ4IzfnzABaFwis5C2BACRQVihtybd4Naq9i6Hqu-wdqpzgRtem2wszh-O9z2tu060-BBeZVAh61XOo7ehDTD4TMpbnGnaudVdH6Howmx7dd7v_vlCw7tduz2K8I5OrGqC-bi0Ofo42H5vnjKVq-Pz4u7VaYZVDErG83qgpuyykuuRNHwhC1LpRZclRZqA6RkucppepflNOdQNKUVYFhRMc3m6GryHbz7GtM9cuNG36eVknLGAEAwkVh0YmnvQvDGysG3W-V3Eoj8DVZOwcoUrNwHK6skYpMoJHK_Nv7P-h_VD7h-e5s</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Xu, Guowen</creator><creator>Gutierrez, Marte</creator><creator>Hou, Zhenkun</creator><creator>Li, Xing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220501</creationdate><title>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</title><author>Xu, Guowen ; Gutierrez, Marte ; Hou, Zhenkun ; Li, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic emission</topic><topic>Coalescing</topic><topic>Complex Fluids and Microfluidics</topic><topic>Crack propagation</topic><topic>Discrete element method</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Foundations</topic><topic>Fractures</topic><topic>Geoengineering</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laboratory tests</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rock masses</topic><topic>Shear strength</topic><topic>Soft and Granular Matter</topic><topic>Stress concentration</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Gutierrez, Marte</creatorcontrib><creatorcontrib>Hou, Zhenkun</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guowen</au><au>Gutierrez, Marte</au><au>Hou, Zhenkun</au><au>Li, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><artnum>53</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-022-01207-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1434-5021
ispartof Granular matter, 2022-05, Vol.24 (2), Article 53
issn 1434-5021
1434-7636
language eng
recordid cdi_proquest_journals_2633111737
source SpringerNature Journals
subjects Acoustic emission
Coalescing
Complex Fluids and Microfluidics
Crack propagation
Discrete element method
Engineering Fluid Dynamics
Engineering Thermodynamics
Foundations
Fractures
Geoengineering
Heat and Mass Transfer
Hydraulics
Industrial Chemistry/Chemical Engineering
Laboratory tests
Materials Science
Mathematical analysis
Mechanical properties
Microcracks
Normal distribution
Original Paper
Physics
Physics and Astronomy
Rock masses
Shear strength
Soft and Granular Matter
Stress concentration
Tensors
title Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20and%20coalescence%20of%20two%20infilled%20parallel%20fractures%20in%20shale:%20laboratory%20testing%20and%20DEM%20simulations&rft.jtitle=Granular%20matter&rft.au=Xu,%20Guowen&rft.date=2022-05-01&rft.volume=24&rft.issue=2&rft.artnum=53&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-022-01207-9&rft_dat=%3Cproquest_cross%3E2633111737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633111737&rft_id=info:pmid/&rfr_iscdi=true