Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations
Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically...
Gespeichert in:
Veröffentlicht in: | Granular matter 2022-05, Vol.24 (2), Article 53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Granular matter |
container_volume | 24 |
creator | Xu, Guowen Gutierrez, Marte Hou, Zhenkun Li, Xing |
description | Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures. |
doi_str_mv | 10.1007/s10035-022-01207-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2633111737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2633111737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeC1Ezvhhkp5SEVwgLPlOHZJlcbBdoT695imEjcuuyPtzOzuIHQJ5BoIETchVVZkhNKMACUiq47QDHKWZ4IzfnzABaFwis5C2BACRQVihtybd4Naq9i6Hqu-wdqpzgRtem2wszh-O9z2tu060-BBeZVAh61XOo7ehDTD4TMpbnGnaudVdH6Howmx7dd7v_vlCw7tduz2K8I5OrGqC-bi0Ofo42H5vnjKVq-Pz4u7VaYZVDErG83qgpuyykuuRNHwhC1LpRZclRZqA6RkucppepflNOdQNKUVYFhRMc3m6GryHbz7GtM9cuNG36eVknLGAEAwkVh0YmnvQvDGysG3W-V3Eoj8DVZOwcoUrNwHK6skYpMoJHK_Nv7P-h_VD7h-e5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633111737</pqid></control><display><type>article</type><title>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</title><source>SpringerNature Journals</source><creator>Xu, Guowen ; Gutierrez, Marte ; Hou, Zhenkun ; Li, Xing</creator><creatorcontrib>Xu, Guowen ; Gutierrez, Marte ; Hou, Zhenkun ; Li, Xing</creatorcontrib><description>Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-022-01207-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustic emission ; Coalescing ; Complex Fluids and Microfluidics ; Crack propagation ; Discrete element method ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Foundations ; Fractures ; Geoengineering ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Laboratory tests ; Materials Science ; Mathematical analysis ; Mechanical properties ; Microcracks ; Normal distribution ; Original Paper ; Physics ; Physics and Astronomy ; Rock masses ; Shear strength ; Soft and Granular Matter ; Stress concentration ; Tensors</subject><ispartof>Granular matter, 2022-05, Vol.24 (2), Article 53</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</citedby><cites>FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-022-01207-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-022-01207-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Gutierrez, Marte</creatorcontrib><creatorcontrib>Hou, Zhenkun</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><title>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.</description><subject>Acoustic emission</subject><subject>Coalescing</subject><subject>Complex Fluids and Microfluidics</subject><subject>Crack propagation</subject><subject>Discrete element method</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Foundations</subject><subject>Fractures</subject><subject>Geoengineering</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laboratory tests</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rock masses</subject><subject>Shear strength</subject><subject>Soft and Granular Matter</subject><subject>Stress concentration</subject><subject>Tensors</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeC1Ezvhhkp5SEVwgLPlOHZJlcbBdoT695imEjcuuyPtzOzuIHQJ5BoIETchVVZkhNKMACUiq47QDHKWZ4IzfnzABaFwis5C2BACRQVihtybd4Naq9i6Hqu-wdqpzgRtem2wszh-O9z2tu060-BBeZVAh61XOo7ehDTD4TMpbnGnaudVdH6Howmx7dd7v_vlCw7tduz2K8I5OrGqC-bi0Ofo42H5vnjKVq-Pz4u7VaYZVDErG83qgpuyykuuRNHwhC1LpRZclRZqA6RkucppepflNOdQNKUVYFhRMc3m6GryHbz7GtM9cuNG36eVknLGAEAwkVh0YmnvQvDGysG3W-V3Eoj8DVZOwcoUrNwHK6skYpMoJHK_Nv7P-h_VD7h-e5s</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Xu, Guowen</creator><creator>Gutierrez, Marte</creator><creator>Hou, Zhenkun</creator><creator>Li, Xing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220501</creationdate><title>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</title><author>Xu, Guowen ; Gutierrez, Marte ; Hou, Zhenkun ; Li, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8dc3b56e89486a75d66e8f36e8b76a8f1be10834a421203424615d8f71e3593c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic emission</topic><topic>Coalescing</topic><topic>Complex Fluids and Microfluidics</topic><topic>Crack propagation</topic><topic>Discrete element method</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Foundations</topic><topic>Fractures</topic><topic>Geoengineering</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laboratory tests</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rock masses</topic><topic>Shear strength</topic><topic>Soft and Granular Matter</topic><topic>Stress concentration</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guowen</creatorcontrib><creatorcontrib>Gutierrez, Marte</creatorcontrib><creatorcontrib>Hou, Zhenkun</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guowen</au><au>Gutierrez, Marte</au><au>Hou, Zhenkun</au><au>Li, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>24</volume><issue>2</issue><artnum>53</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>Filling materials exist widely in natural rock fractures, which can impact rock mechanical behavior. However, only limited research has been performed to study the influence of the infill on the fracture behavior of rocks or rock-like materials. This paper investigates experimentally and numerically crack propagation in shale specimens with two infilled parallel fractures. The experiments focused on the influence of ligament length and orientation angles of two infilled fractures on shale cracking behavior under uniaxial compression. The numerical approach was based on a parametric study using the particle discrete element method (DEM) and the moment tensor theory of acoustic emissions (AE). The numerical results show that: (1) Shear strength is higher with infilled fractures than with open fractures; and (2) Stress concentration in the bridging area of specimens with infilled fracture is less evident, causing less microcracks in this area resulting in a lower possibility for the coalescence of the cracks thereby increasing the rock mass shear strength. These results agree with experimental observations and validate the numerical modeling. For both infilled and clear fractures, AE magnitudes exhibit a normal distribution, while the frequency of the number of cracks forming every AE event exhibit an exponential decay. Further DEM results show that for infilled fractures: (1) Four kinds of coalescence patterns in the bridging area were obtained, namely: non-coalescence, wing cracks coalescence, anti-wing crack coalescence and mixed cracks coalescence; and (2) The infilled fractures have a notable influence on the direction of the AE moment tensors, specifically, the extensional components of the tensile cracks near the fractures tend to be parallel to the long axis of the fractures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-022-01207-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5021 |
ispartof | Granular matter, 2022-05, Vol.24 (2), Article 53 |
issn | 1434-5021 1434-7636 |
language | eng |
recordid | cdi_proquest_journals_2633111737 |
source | SpringerNature Journals |
subjects | Acoustic emission Coalescing Complex Fluids and Microfluidics Crack propagation Discrete element method Engineering Fluid Dynamics Engineering Thermodynamics Foundations Fractures Geoengineering Heat and Mass Transfer Hydraulics Industrial Chemistry/Chemical Engineering Laboratory tests Materials Science Mathematical analysis Mechanical properties Microcracks Normal distribution Original Paper Physics Physics and Astronomy Rock masses Shear strength Soft and Granular Matter Stress concentration Tensors |
title | Propagation and coalescence of two infilled parallel fractures in shale: laboratory testing and DEM simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A45%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20and%20coalescence%20of%20two%20infilled%20parallel%20fractures%20in%20shale:%20laboratory%20testing%20and%20DEM%20simulations&rft.jtitle=Granular%20matter&rft.au=Xu,%20Guowen&rft.date=2022-05-01&rft.volume=24&rft.issue=2&rft.artnum=53&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-022-01207-9&rft_dat=%3Cproquest_cross%3E2633111737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633111737&rft_id=info:pmid/&rfr_iscdi=true |