Variational Multi-Prototype Encoder for Object Recognition Using Multiple Prototype Images

In the recent research of Variational Prototyping-Encoder (VPE), the problem of classifying 2D flat objects of the unseen class has been addressed. VPE solves this problem by pre-learning the image translation task from real-world object images to their corresponding prototype images as a meta-task....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.19586-19598
Hauptverfasser: Kang, Jun Seok, Ahn, Sang Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19598
container_issue
container_start_page 19586
container_title IEEE access
container_volume 10
creator Kang, Jun Seok
Ahn, Sang Chul
description In the recent research of Variational Prototyping-Encoder (VPE), the problem of classifying 2D flat objects of the unseen class has been addressed. VPE solves this problem by pre-learning the image translation task from real-world object images to their corresponding prototype images as a meta-task. VPE uses a single prototype for each object class. However, in general, a single prototype is not sufficient to represent a generic object class because the appearance can change significantly according to viewpoints and other factors. In this case, using VPE and a single prototype for each class in training can result in overfitting or performance degradation. One solution may be the use of multiple prototypes. However, this also requires costly sub-labeling for dividing the input class into smaller classes and assigning a prototype to each. Therefore, we propose a new learning method, the variational multi-prototype encoder (VaMPE), which can overcome the limitations of VPE and use multiple prototypes for each object class. The proposed method does not require additional sub-labeling other than simply adding multiple prototypes to each class. Through various experiments, we demonstrate that the proposed method outperforms VPE.
doi_str_mv 10.1109/ACCESS.2022.3151856
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2633041944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9714291</ieee_id><doaj_id>oai_doaj_org_article_cdc0924d57624fa1b5e1a0813fd95b4b</doaj_id><sourcerecordid>2633041944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-46fba21773555e917d629e8cfb46db09872929a7d98c8d9c9d00205e2956c4aa3</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxYMoWGo_QS8Bz6n7P9ljKVULlYq1Hrwsm91J2ZJ242566Lc3NVKdywyP-b2BeUkyxmiCMZIP09lsvl5PCCJkQjHHBRdXyYBgITPKqbj-N98moxh3qKuik3g-SD4_dHC6df6g6_TlWLcuew2-9e2pgXR-MN5CSCsf0lW5A9Omb2D89uDOQLqJ7rDtoaaG9I9b7PUW4l1yU-k6wui3D5PN4_x99pwtV0-L2XSZGcqLNmOiKjXBeU455yBxbgWRUJiqZMKWSBY5kUTq3MrCFFYaaREiiAORXBimNR0mi97Xer1TTXB7HU7Ka6d-BB-2SofWmRqUsQZJwizPBWGVxiUHrLtf0MpKXrKy87rvvZrgv44QW7Xzx9D9JioiKEUMS8a6LdpvmeBjDFBdrmKkzpmoPhN1zkT9ZtJR455yAHAhZI4ZkZh-A9zih70</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2633041944</pqid></control><display><type>article</type><title>Variational Multi-Prototype Encoder for Object Recognition Using Multiple Prototype Images</title><source>Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>IEEE Xplore Open Access Journals</source><creator>Kang, Jun Seok ; Ahn, Sang Chul</creator><creatorcontrib>Kang, Jun Seok ; Ahn, Sang Chul</creatorcontrib><description>In the recent research of Variational Prototyping-Encoder (VPE), the problem of classifying 2D flat objects of the unseen class has been addressed. VPE solves this problem by pre-learning the image translation task from real-world object images to their corresponding prototype images as a meta-task. VPE uses a single prototype for each object class. However, in general, a single prototype is not sufficient to represent a generic object class because the appearance can change significantly according to viewpoints and other factors. In this case, using VPE and a single prototype for each class in training can result in overfitting or performance degradation. One solution may be the use of multiple prototypes. However, this also requires costly sub-labeling for dividing the input class into smaller classes and assigning a prototype to each. Therefore, we propose a new learning method, the variational multi-prototype encoder (VaMPE), which can overcome the limitations of VPE and use multiple prototypes for each object class. The proposed method does not require additional sub-labeling other than simply adding multiple prototypes to each class. Through various experiments, we demonstrate that the proposed method outperforms VPE.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3151856</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Coders ; Deep learning ; embedding space ; Feature extraction ; image classification ; Labeling ; Learning ; Neural networks ; Object recognition ; Performance degradation ; Perturbation methods ; prototype learning ; Prototypes ; Prototyping ; Task analysis ; Training ; variational encoder</subject><ispartof>IEEE access, 2022, Vol.10, p.19586-19598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-46fba21773555e917d629e8cfb46db09872929a7d98c8d9c9d00205e2956c4aa3</cites><orcidid>0000-0002-6384-891X ; 0000-0003-2959-1089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9714291$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kang, Jun Seok</creatorcontrib><creatorcontrib>Ahn, Sang Chul</creatorcontrib><title>Variational Multi-Prototype Encoder for Object Recognition Using Multiple Prototype Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the recent research of Variational Prototyping-Encoder (VPE), the problem of classifying 2D flat objects of the unseen class has been addressed. VPE solves this problem by pre-learning the image translation task from real-world object images to their corresponding prototype images as a meta-task. VPE uses a single prototype for each object class. However, in general, a single prototype is not sufficient to represent a generic object class because the appearance can change significantly according to viewpoints and other factors. In this case, using VPE and a single prototype for each class in training can result in overfitting or performance degradation. One solution may be the use of multiple prototypes. However, this also requires costly sub-labeling for dividing the input class into smaller classes and assigning a prototype to each. Therefore, we propose a new learning method, the variational multi-prototype encoder (VaMPE), which can overcome the limitations of VPE and use multiple prototypes for each object class. The proposed method does not require additional sub-labeling other than simply adding multiple prototypes to each class. Through various experiments, we demonstrate that the proposed method outperforms VPE.</description><subject>Coders</subject><subject>Deep learning</subject><subject>embedding space</subject><subject>Feature extraction</subject><subject>image classification</subject><subject>Labeling</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Performance degradation</subject><subject>Perturbation methods</subject><subject>prototype learning</subject><subject>Prototypes</subject><subject>Prototyping</subject><subject>Task analysis</subject><subject>Training</subject><subject>variational encoder</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxYMoWGo_QS8Bz6n7P9ljKVULlYq1Hrwsm91J2ZJ242566Lc3NVKdywyP-b2BeUkyxmiCMZIP09lsvl5PCCJkQjHHBRdXyYBgITPKqbj-N98moxh3qKuik3g-SD4_dHC6df6g6_TlWLcuew2-9e2pgXR-MN5CSCsf0lW5A9Omb2D89uDOQLqJ7rDtoaaG9I9b7PUW4l1yU-k6wui3D5PN4_x99pwtV0-L2XSZGcqLNmOiKjXBeU455yBxbgWRUJiqZMKWSBY5kUTq3MrCFFYaaREiiAORXBimNR0mi97Xer1TTXB7HU7Ka6d-BB-2SofWmRqUsQZJwizPBWGVxiUHrLtf0MpKXrKy87rvvZrgv44QW7Xzx9D9JioiKEUMS8a6LdpvmeBjDFBdrmKkzpmoPhN1zkT9ZtJR455yAHAhZI4ZkZh-A9zih70</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Kang, Jun Seok</creator><creator>Ahn, Sang Chul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6384-891X</orcidid><orcidid>https://orcid.org/0000-0003-2959-1089</orcidid></search><sort><creationdate>2022</creationdate><title>Variational Multi-Prototype Encoder for Object Recognition Using Multiple Prototype Images</title><author>Kang, Jun Seok ; Ahn, Sang Chul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-46fba21773555e917d629e8cfb46db09872929a7d98c8d9c9d00205e2956c4aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Deep learning</topic><topic>embedding space</topic><topic>Feature extraction</topic><topic>image classification</topic><topic>Labeling</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Performance degradation</topic><topic>Perturbation methods</topic><topic>prototype learning</topic><topic>Prototypes</topic><topic>Prototyping</topic><topic>Task analysis</topic><topic>Training</topic><topic>variational encoder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jun Seok</creatorcontrib><creatorcontrib>Ahn, Sang Chul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jun Seok</au><au>Ahn, Sang Chul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational Multi-Prototype Encoder for Object Recognition Using Multiple Prototype Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>19586</spage><epage>19598</epage><pages>19586-19598</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the recent research of Variational Prototyping-Encoder (VPE), the problem of classifying 2D flat objects of the unseen class has been addressed. VPE solves this problem by pre-learning the image translation task from real-world object images to their corresponding prototype images as a meta-task. VPE uses a single prototype for each object class. However, in general, a single prototype is not sufficient to represent a generic object class because the appearance can change significantly according to viewpoints and other factors. In this case, using VPE and a single prototype for each class in training can result in overfitting or performance degradation. One solution may be the use of multiple prototypes. However, this also requires costly sub-labeling for dividing the input class into smaller classes and assigning a prototype to each. Therefore, we propose a new learning method, the variational multi-prototype encoder (VaMPE), which can overcome the limitations of VPE and use multiple prototypes for each object class. The proposed method does not require additional sub-labeling other than simply adding multiple prototypes to each class. Through various experiments, we demonstrate that the proposed method outperforms VPE.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3151856</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6384-891X</orcidid><orcidid>https://orcid.org/0000-0003-2959-1089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.19586-19598
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2633041944
source Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); IEEE Xplore Open Access Journals
subjects Coders
Deep learning
embedding space
Feature extraction
image classification
Labeling
Learning
Neural networks
Object recognition
Performance degradation
Perturbation methods
prototype learning
Prototypes
Prototyping
Task analysis
Training
variational encoder
title Variational Multi-Prototype Encoder for Object Recognition Using Multiple Prototype Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20Multi-Prototype%20Encoder%20for%20Object%20Recognition%20Using%20Multiple%20Prototype%20Images&rft.jtitle=IEEE%20access&rft.au=Kang,%20Jun%20Seok&rft.date=2022&rft.volume=10&rft.spage=19586&rft.epage=19598&rft.pages=19586-19598&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3151856&rft_dat=%3Cproquest_doaj_%3E2633041944%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2633041944&rft_id=info:pmid/&rft_ieee_id=9714291&rft_doaj_id=oai_doaj_org_article_cdc0924d57624fa1b5e1a0813fd95b4b&rfr_iscdi=true