Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces

In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2022-02, Vol.38 (2), p.431-442
Hauptverfasser: Yan, Ke Song, Zeng, Fan Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 2
container_start_page 431
container_title Acta mathematica Sinica. English series
container_volume 38
creator Yan, Ke Song
Zeng, Fan Ping
description In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.
doi_str_mv 10.1007/s10114-021-0232-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632969998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632969998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeA52pe0qbNUYY6YeBg200IaZLOjLWpSQfbf2-kA08eHu_B98eDD0L3QB6BkPIpAgHIM0IhDaPZ8QJNIGciKzmUl-e7KoBfo5sYd4QUhSB8gj7Xvvd7v3Va7fFqULXbu-GEVWfwMtqD8ZkPtRvwOijtui1eBt_bkByND3juW-tbH_ovF9uIfYc3nUtCi1e90jbeoqtG7aO9O-8p2ry-rGfzbPHx9j57XmSaAR8yLiA3jaaM1XVlNRe1gUYzRqHMDc0BRMFsI2itc2aUgQp0YerSFKJQJU3iFD2MvX3w3wcbB7nzh9Cll5JyRgUXQlTJBaNLBx9jsI3sg2tVOEkg8heiHCHKBFH-QpTHlKFjJiZvt7Xhr_n_0A8x8nXd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632969998</pqid></control><display><type>article</type><title>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Yan, Ke Song ; Zeng, Fan Ping</creator><creatorcontrib>Yan, Ke Song ; Zeng, Fan Ping</creatorcontrib><description>In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-021-0232-x</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Mathematics ; Mathematics and Statistics ; Orbital stability ; Topology ; Tracing</subject><ispartof>Acta mathematica Sinica. English series, 2022-02, Vol.38 (2), p.431-442</ispartof><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2022</rights><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</citedby><cites>FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-021-0232-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-021-0232-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yan, Ke Song</creatorcontrib><creatorcontrib>Zeng, Fan Ping</creatorcontrib><title>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbital stability</subject><subject>Topology</subject><subject>Tracing</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeA52pe0qbNUYY6YeBg200IaZLOjLWpSQfbf2-kA08eHu_B98eDD0L3QB6BkPIpAgHIM0IhDaPZ8QJNIGciKzmUl-e7KoBfo5sYd4QUhSB8gj7Xvvd7v3Va7fFqULXbu-GEVWfwMtqD8ZkPtRvwOijtui1eBt_bkByND3juW-tbH_ovF9uIfYc3nUtCi1e90jbeoqtG7aO9O-8p2ry-rGfzbPHx9j57XmSaAR8yLiA3jaaM1XVlNRe1gUYzRqHMDc0BRMFsI2itc2aUgQp0YerSFKJQJU3iFD2MvX3w3wcbB7nzh9Cll5JyRgUXQlTJBaNLBx9jsI3sg2tVOEkg8heiHCHKBFH-QpTHlKFjJiZvt7Xhr_n_0A8x8nXd</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yan, Ke Song</creator><creator>Zeng, Fan Ping</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220201</creationdate><title>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</title><author>Yan, Ke Song ; Zeng, Fan Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbital stability</topic><topic>Topology</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke Song</creatorcontrib><creatorcontrib>Zeng, Fan Ping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ke Song</au><au>Zeng, Fan Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>431</spage><epage>442</epage><pages>431-442</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-021-0232-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2022-02, Vol.38 (2), p.431-442
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_2632969998
source SpringerLink Journals; Alma/SFX Local Collection
subjects Mathematics
Mathematics and Statistics
Orbital stability
Topology
Tracing
title Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Stability%20and%20Pseudo-orbit%20Tracing%20Property%20for%20Homeomorphisms%20on%20Uniform%20Spaces&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Yan,%20Ke%20Song&rft.date=2022-02-01&rft.volume=38&rft.issue=2&rft.spage=431&rft.epage=442&rft.pages=431-442&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-021-0232-x&rft_dat=%3Cproquest_cross%3E2632969998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632969998&rft_id=info:pmid/&rfr_iscdi=true