Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces
In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2022-02, Vol.38 (2), p.431-442 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 2 |
container_start_page | 431 |
container_title | Acta mathematica Sinica. English series |
container_volume | 38 |
creator | Yan, Ke Song Zeng, Fan Ping |
description | In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable. |
doi_str_mv | 10.1007/s10114-021-0232-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632969998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632969998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeA52pe0qbNUYY6YeBg200IaZLOjLWpSQfbf2-kA08eHu_B98eDD0L3QB6BkPIpAgHIM0IhDaPZ8QJNIGciKzmUl-e7KoBfo5sYd4QUhSB8gj7Xvvd7v3Va7fFqULXbu-GEVWfwMtqD8ZkPtRvwOijtui1eBt_bkByND3juW-tbH_ovF9uIfYc3nUtCi1e90jbeoqtG7aO9O-8p2ry-rGfzbPHx9j57XmSaAR8yLiA3jaaM1XVlNRe1gUYzRqHMDc0BRMFsI2itc2aUgQp0YerSFKJQJU3iFD2MvX3w3wcbB7nzh9Cll5JyRgUXQlTJBaNLBx9jsI3sg2tVOEkg8heiHCHKBFH-QpTHlKFjJiZvt7Xhr_n_0A8x8nXd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632969998</pqid></control><display><type>article</type><title>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Yan, Ke Song ; Zeng, Fan Ping</creator><creatorcontrib>Yan, Ke Song ; Zeng, Fan Ping</creatorcontrib><description>In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-021-0232-x</identifier><language>eng</language><publisher>Beijing: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</publisher><subject>Mathematics ; Mathematics and Statistics ; Orbital stability ; Topology ; Tracing</subject><ispartof>Acta mathematica Sinica. English series, 2022-02, Vol.38 (2), p.431-442</ispartof><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022</rights><rights>Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</citedby><cites>FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-021-0232-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-021-0232-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yan, Ke Song</creatorcontrib><creatorcontrib>Zeng, Fan Ping</creatorcontrib><title>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbital stability</subject><subject>Topology</subject><subject>Tracing</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeA52pe0qbNUYY6YeBg200IaZLOjLWpSQfbf2-kA08eHu_B98eDD0L3QB6BkPIpAgHIM0IhDaPZ8QJNIGciKzmUl-e7KoBfo5sYd4QUhSB8gj7Xvvd7v3Va7fFqULXbu-GEVWfwMtqD8ZkPtRvwOijtui1eBt_bkByND3juW-tbH_ovF9uIfYc3nUtCi1e90jbeoqtG7aO9O-8p2ry-rGfzbPHx9j57XmSaAR8yLiA3jaaM1XVlNRe1gUYzRqHMDc0BRMFsI2itc2aUgQp0YerSFKJQJU3iFD2MvX3w3wcbB7nzh9Cll5JyRgUXQlTJBaNLBx9jsI3sg2tVOEkg8heiHCHKBFH-QpTHlKFjJiZvt7Xhr_n_0A8x8nXd</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yan, Ke Song</creator><creator>Zeng, Fan Ping</creator><general>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220201</creationdate><title>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</title><author>Yan, Ke Song ; Zeng, Fan Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-6914dfc233bb8ec69bd1fc332174d2411953ef92bc43dad181c5db7d595a72953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbital stability</topic><topic>Topology</topic><topic>Tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke Song</creatorcontrib><creatorcontrib>Zeng, Fan Ping</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ke Song</au><au>Zeng, Fan Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>38</volume><issue>2</issue><spage>431</spage><epage>442</epage><pages>431-442</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>In this paper, we investigate the topological stability and pseudo-orbit tracing property for homeomorphisms on uniform spaces. We introduce the concept of topological stability for homeomorphisms on compact uniform spaces and prove that if a homeomorphism on a compact uniform space is expansive and has pseudo-orbit tracing property, then it is topologically stable. Moreover, we discuss the topological stability for homeomorphisms on uniform spaces from the view of localization. We introduce definitions of topologically stable point and shadowable point for homeomorphisms on uniform spaces and show that every shadowable point of an expansive homeomorphism on a compact uniform space is topologically stable.</abstract><cop>Beijing</cop><pub>Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society</pub><doi>10.1007/s10114-021-0232-x</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-8516 |
ispartof | Acta mathematica Sinica. English series, 2022-02, Vol.38 (2), p.431-442 |
issn | 1439-8516 1439-7617 |
language | eng |
recordid | cdi_proquest_journals_2632969998 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Mathematics Mathematics and Statistics Orbital stability Topology Tracing |
title | Topological Stability and Pseudo-orbit Tracing Property for Homeomorphisms on Uniform Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A47%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Stability%20and%20Pseudo-orbit%20Tracing%20Property%20for%20Homeomorphisms%20on%20Uniform%20Spaces&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Yan,%20Ke%20Song&rft.date=2022-02-01&rft.volume=38&rft.issue=2&rft.spage=431&rft.epage=442&rft.pages=431-442&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-021-0232-x&rft_dat=%3Cproquest_cross%3E2632969998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632969998&rft_id=info:pmid/&rfr_iscdi=true |