Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies
Ketamine is a chiral drug used for various clinical purposes but often misused. It is metabolized to norketamine, an active chiral metabolite. Both substances have been detected in environmental matrices, but studies about their enantioselective toxic effects are scarce. In the present study, the en...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 2022-03, Vol.41 (3), p.569-579 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 579 |
---|---|
container_issue | 3 |
container_start_page | 569 |
container_title | Environmental toxicology and chemistry |
container_volume | 41 |
creator | Pérez‐Pereira, Ariana Ribeiro, Cláudia Teles, Filomena Gonçalves, Ricardo M.F. Gonçalves, Virgínia Pereira, José Augusto Carrola, João Soares Pires, Carlos Tiritan, Maria Elizabeth |
description | Ketamine is a chiral drug used for various clinical purposes but often misused. It is metabolized to norketamine, an active chiral metabolite. Both substances have been detected in environmental matrices, but studies about their enantioselective toxic effects are scarce. In the present study, the enantiomers of ketamine and norketamine were separated by a semipreparative enantioselective liquid chromatography method, and their toxicity was investigated in different aquatic organisms. The enantioseparation was achieved using a homemade semipreparative chiral column. Optimized conditions allowed the recovery of compounds with enantiomeric purity higher than 99%, except for (R)‐ketamine (97%). The absolute configuration of the enantiomers was achieved by experimental electronic circular dichroism (ECD). The ecotoxicity assays were performed with the microcrustacean Daphnia magna and the protozoan Tetrahymena thermophila using Toxkit MicroBioTests. Different concentrations were tested (0.1–10 000 µg/L) to include environmental levels (~0.5–~100 µg/L), for racemates (R,S) and the isolated enantiomers (R or S) of ketamine and norketamine. No toxicity was observed in either organism at environmental levels. However, at greater concentrations, (R,S)‐ketamine presented higher mortality for D. magna compared with its metabolite (R,S)‐norketamine (85 and 20%, respectively), and the (S)‐ketamine enantiomer showed higher toxicity than the (R)‐ketamine enantiomer. In addition, (S)‐ketamine also presented higher growth inhibition than (R)‐ketamine for T. thermophila at the highest concentrations (5000 and 10 000 µg/L). Contrary to D. magna, growth inhibition was observed for both enantiomers of norketamine and in the same magnitude order of the (S)‐ketamine enantiomer. The results showed that the 2 organisms had different susceptibilities to norketamine and that the toxicity of ketamine at high concentrations is enantioselective for both organisms. Environ Toxicol Chem 2022;41:569–579. © 2020 SETAC |
doi_str_mv | 10.1002/etc.4955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632756068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632756068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3495-4ce75a285f5611f02b7c0dd224cd457b6368327994914dfbddb601a2efe317383</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqUg8QtQJBaWFD9iJ2GrqvIQFQzAhmQ5tiO5pHFrO0D_PW4b2JjuQ9899-gAcI7gGEGIr3WQ46yk9AAMEaU4LRgqDsEQ5gSmOWbFAJx4v4AQsbIsj8GAEFyUZcaG4P1RB7E0rU5Eq5In6z76-SaZtaINxjrtbdPFpt0h_dbrRstgPnUyWXciGJnMpA3220gTNslL6JTR_hQc1aLx-qyvI_B2O3ud3qfz57uH6WSeShJdp5nUORW4oDVlCNUQV7mESmGcSZXRvGKEFQTn0XCJMlVXSlUMIoF1rQnKSUFG4HKvu3J23Wkf-MJ2ro0vOWbxkjLIttTVnpLOeu90zVfOLIXbcAT5NkYeY-TbGCN60Qt21VKrP_A3twike-DLNHrzrxCPzE7wB6BOfC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632756068</pqid></control><display><type>article</type><title>Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Pérez‐Pereira, Ariana ; Ribeiro, Cláudia ; Teles, Filomena ; Gonçalves, Ricardo ; M.F. Gonçalves, Virgínia ; Pereira, José Augusto ; Carrola, João Soares ; Pires, Carlos ; Tiritan, Maria Elizabeth</creator><creatorcontrib>Pérez‐Pereira, Ariana ; Ribeiro, Cláudia ; Teles, Filomena ; Gonçalves, Ricardo ; M.F. Gonçalves, Virgínia ; Pereira, José Augusto ; Carrola, João Soares ; Pires, Carlos ; Tiritan, Maria Elizabeth</creatorcontrib><description>Ketamine is a chiral drug used for various clinical purposes but often misused. It is metabolized to norketamine, an active chiral metabolite. Both substances have been detected in environmental matrices, but studies about their enantioselective toxic effects are scarce. In the present study, the enantiomers of ketamine and norketamine were separated by a semipreparative enantioselective liquid chromatography method, and their toxicity was investigated in different aquatic organisms. The enantioseparation was achieved using a homemade semipreparative chiral column. Optimized conditions allowed the recovery of compounds with enantiomeric purity higher than 99%, except for (R)‐ketamine (97%). The absolute configuration of the enantiomers was achieved by experimental electronic circular dichroism (ECD). The ecotoxicity assays were performed with the microcrustacean Daphnia magna and the protozoan Tetrahymena thermophila using Toxkit MicroBioTests. Different concentrations were tested (0.1–10 000 µg/L) to include environmental levels (~0.5–~100 µg/L), for racemates (R,S) and the isolated enantiomers (R or S) of ketamine and norketamine. No toxicity was observed in either organism at environmental levels. However, at greater concentrations, (R,S)‐ketamine presented higher mortality for D. magna compared with its metabolite (R,S)‐norketamine (85 and 20%, respectively), and the (S)‐ketamine enantiomer showed higher toxicity than the (R)‐ketamine enantiomer. In addition, (S)‐ketamine also presented higher growth inhibition than (R)‐ketamine for T. thermophila at the highest concentrations (5000 and 10 000 µg/L). Contrary to D. magna, growth inhibition was observed for both enantiomers of norketamine and in the same magnitude order of the (S)‐ketamine enantiomer. The results showed that the 2 organisms had different susceptibilities to norketamine and that the toxicity of ketamine at high concentrations is enantioselective for both organisms. Environ Toxicol Chem 2022;41:569–579. © 2020 SETAC</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.4955</identifier><identifier>PMID: 33289946</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Absolute configuration ; Animals ; Aquatic organisms ; Chiral pharmaceuticals ; Chromatography, Liquid - methods ; Circular dichroism ; Column chromatography ; Daphnia - metabolism ; Daphnia magna ; Dichroism ; Ecotoxicity ; Enantiomers ; Enantioselectivity ; Ketamine ; Ketamine - analogs & derivatives ; Ketamine - chemistry ; Ketamine - toxicity ; Liquid chromatography ; Metabolites ; Organisms ; Stereoisomerism ; Tetrahymena thermophila ; Toxicity</subject><ispartof>Environmental toxicology and chemistry, 2022-03, Vol.41 (3), p.569-579</ispartof><rights>2020 SETAC</rights><rights>2020 SETAC.</rights><rights>2022 SETAC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3495-4ce75a285f5611f02b7c0dd224cd457b6368327994914dfbddb601a2efe317383</citedby><cites>FETCH-LOGICAL-c3495-4ce75a285f5611f02b7c0dd224cd457b6368327994914dfbddb601a2efe317383</cites><orcidid>0000-0003-3320-730X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.4955$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.4955$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33289946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez‐Pereira, Ariana</creatorcontrib><creatorcontrib>Ribeiro, Cláudia</creatorcontrib><creatorcontrib>Teles, Filomena</creatorcontrib><creatorcontrib>Gonçalves, Ricardo</creatorcontrib><creatorcontrib>M.F. Gonçalves, Virgínia</creatorcontrib><creatorcontrib>Pereira, José Augusto</creatorcontrib><creatorcontrib>Carrola, João Soares</creatorcontrib><creatorcontrib>Pires, Carlos</creatorcontrib><creatorcontrib>Tiritan, Maria Elizabeth</creatorcontrib><title>Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>Ketamine is a chiral drug used for various clinical purposes but often misused. It is metabolized to norketamine, an active chiral metabolite. Both substances have been detected in environmental matrices, but studies about their enantioselective toxic effects are scarce. In the present study, the enantiomers of ketamine and norketamine were separated by a semipreparative enantioselective liquid chromatography method, and their toxicity was investigated in different aquatic organisms. The enantioseparation was achieved using a homemade semipreparative chiral column. Optimized conditions allowed the recovery of compounds with enantiomeric purity higher than 99%, except for (R)‐ketamine (97%). The absolute configuration of the enantiomers was achieved by experimental electronic circular dichroism (ECD). The ecotoxicity assays were performed with the microcrustacean Daphnia magna and the protozoan Tetrahymena thermophila using Toxkit MicroBioTests. Different concentrations were tested (0.1–10 000 µg/L) to include environmental levels (~0.5–~100 µg/L), for racemates (R,S) and the isolated enantiomers (R or S) of ketamine and norketamine. No toxicity was observed in either organism at environmental levels. However, at greater concentrations, (R,S)‐ketamine presented higher mortality for D. magna compared with its metabolite (R,S)‐norketamine (85 and 20%, respectively), and the (S)‐ketamine enantiomer showed higher toxicity than the (R)‐ketamine enantiomer. In addition, (S)‐ketamine also presented higher growth inhibition than (R)‐ketamine for T. thermophila at the highest concentrations (5000 and 10 000 µg/L). Contrary to D. magna, growth inhibition was observed for both enantiomers of norketamine and in the same magnitude order of the (S)‐ketamine enantiomer. The results showed that the 2 organisms had different susceptibilities to norketamine and that the toxicity of ketamine at high concentrations is enantioselective for both organisms. Environ Toxicol Chem 2022;41:569–579. © 2020 SETAC</description><subject>Absolute configuration</subject><subject>Animals</subject><subject>Aquatic organisms</subject><subject>Chiral pharmaceuticals</subject><subject>Chromatography, Liquid - methods</subject><subject>Circular dichroism</subject><subject>Column chromatography</subject><subject>Daphnia - metabolism</subject><subject>Daphnia magna</subject><subject>Dichroism</subject><subject>Ecotoxicity</subject><subject>Enantiomers</subject><subject>Enantioselectivity</subject><subject>Ketamine</subject><subject>Ketamine - analogs & derivatives</subject><subject>Ketamine - chemistry</subject><subject>Ketamine - toxicity</subject><subject>Liquid chromatography</subject><subject>Metabolites</subject><subject>Organisms</subject><subject>Stereoisomerism</subject><subject>Tetrahymena thermophila</subject><subject>Toxicity</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EoqUg8QtQJBaWFD9iJ2GrqvIQFQzAhmQ5tiO5pHFrO0D_PW4b2JjuQ9899-gAcI7gGEGIr3WQ46yk9AAMEaU4LRgqDsEQ5gSmOWbFAJx4v4AQsbIsj8GAEFyUZcaG4P1RB7E0rU5Eq5In6z76-SaZtaINxjrtbdPFpt0h_dbrRstgPnUyWXciGJnMpA3220gTNslL6JTR_hQc1aLx-qyvI_B2O3ud3qfz57uH6WSeShJdp5nUORW4oDVlCNUQV7mESmGcSZXRvGKEFQTn0XCJMlVXSlUMIoF1rQnKSUFG4HKvu3J23Wkf-MJ2ro0vOWbxkjLIttTVnpLOeu90zVfOLIXbcAT5NkYeY-TbGCN60Qt21VKrP_A3twike-DLNHrzrxCPzE7wB6BOfC8</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Pérez‐Pereira, Ariana</creator><creator>Ribeiro, Cláudia</creator><creator>Teles, Filomena</creator><creator>Gonçalves, Ricardo</creator><creator>M.F. Gonçalves, Virgínia</creator><creator>Pereira, José Augusto</creator><creator>Carrola, João Soares</creator><creator>Pires, Carlos</creator><creator>Tiritan, Maria Elizabeth</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3320-730X</orcidid></search><sort><creationdate>202203</creationdate><title>Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies</title><author>Pérez‐Pereira, Ariana ; Ribeiro, Cláudia ; Teles, Filomena ; Gonçalves, Ricardo ; M.F. Gonçalves, Virgínia ; Pereira, José Augusto ; Carrola, João Soares ; Pires, Carlos ; Tiritan, Maria Elizabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3495-4ce75a285f5611f02b7c0dd224cd457b6368327994914dfbddb601a2efe317383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absolute configuration</topic><topic>Animals</topic><topic>Aquatic organisms</topic><topic>Chiral pharmaceuticals</topic><topic>Chromatography, Liquid - methods</topic><topic>Circular dichroism</topic><topic>Column chromatography</topic><topic>Daphnia - metabolism</topic><topic>Daphnia magna</topic><topic>Dichroism</topic><topic>Ecotoxicity</topic><topic>Enantiomers</topic><topic>Enantioselectivity</topic><topic>Ketamine</topic><topic>Ketamine - analogs & derivatives</topic><topic>Ketamine - chemistry</topic><topic>Ketamine - toxicity</topic><topic>Liquid chromatography</topic><topic>Metabolites</topic><topic>Organisms</topic><topic>Stereoisomerism</topic><topic>Tetrahymena thermophila</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez‐Pereira, Ariana</creatorcontrib><creatorcontrib>Ribeiro, Cláudia</creatorcontrib><creatorcontrib>Teles, Filomena</creatorcontrib><creatorcontrib>Gonçalves, Ricardo</creatorcontrib><creatorcontrib>M.F. Gonçalves, Virgínia</creatorcontrib><creatorcontrib>Pereira, José Augusto</creatorcontrib><creatorcontrib>Carrola, João Soares</creatorcontrib><creatorcontrib>Pires, Carlos</creatorcontrib><creatorcontrib>Tiritan, Maria Elizabeth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez‐Pereira, Ariana</au><au>Ribeiro, Cláudia</au><au>Teles, Filomena</au><au>Gonçalves, Ricardo</au><au>M.F. Gonçalves, Virgínia</au><au>Pereira, José Augusto</au><au>Carrola, João Soares</au><au>Pires, Carlos</au><au>Tiritan, Maria Elizabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2022-03</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><spage>569</spage><epage>579</epage><pages>569-579</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>Ketamine is a chiral drug used for various clinical purposes but often misused. It is metabolized to norketamine, an active chiral metabolite. Both substances have been detected in environmental matrices, but studies about their enantioselective toxic effects are scarce. In the present study, the enantiomers of ketamine and norketamine were separated by a semipreparative enantioselective liquid chromatography method, and their toxicity was investigated in different aquatic organisms. The enantioseparation was achieved using a homemade semipreparative chiral column. Optimized conditions allowed the recovery of compounds with enantiomeric purity higher than 99%, except for (R)‐ketamine (97%). The absolute configuration of the enantiomers was achieved by experimental electronic circular dichroism (ECD). The ecotoxicity assays were performed with the microcrustacean Daphnia magna and the protozoan Tetrahymena thermophila using Toxkit MicroBioTests. Different concentrations were tested (0.1–10 000 µg/L) to include environmental levels (~0.5–~100 µg/L), for racemates (R,S) and the isolated enantiomers (R or S) of ketamine and norketamine. No toxicity was observed in either organism at environmental levels. However, at greater concentrations, (R,S)‐ketamine presented higher mortality for D. magna compared with its metabolite (R,S)‐norketamine (85 and 20%, respectively), and the (S)‐ketamine enantiomer showed higher toxicity than the (R)‐ketamine enantiomer. In addition, (S)‐ketamine also presented higher growth inhibition than (R)‐ketamine for T. thermophila at the highest concentrations (5000 and 10 000 µg/L). Contrary to D. magna, growth inhibition was observed for both enantiomers of norketamine and in the same magnitude order of the (S)‐ketamine enantiomer. The results showed that the 2 organisms had different susceptibilities to norketamine and that the toxicity of ketamine at high concentrations is enantioselective for both organisms. Environ Toxicol Chem 2022;41:569–579. © 2020 SETAC</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>33289946</pmid><doi>10.1002/etc.4955</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3320-730X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 2022-03, Vol.41 (3), p.569-579 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_journals_2632756068 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Absolute configuration Animals Aquatic organisms Chiral pharmaceuticals Chromatography, Liquid - methods Circular dichroism Column chromatography Daphnia - metabolism Daphnia magna Dichroism Ecotoxicity Enantiomers Enantioselectivity Ketamine Ketamine - analogs & derivatives Ketamine - chemistry Ketamine - toxicity Liquid chromatography Metabolites Organisms Stereoisomerism Tetrahymena thermophila Toxicity |
title | Ketamine and Norketamine: Enantioresolution and Enantioselective Aquatic Ecotoxicity Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ketamine%20and%20Norketamine:%20Enantioresolution%20and%20Enantioselective%20Aquatic%20Ecotoxicity%20Studies&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=P%C3%A9rez%E2%80%90Pereira,%20Ariana&rft.date=2022-03&rft.volume=41&rft.issue=3&rft.spage=569&rft.epage=579&rft.pages=569-579&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.4955&rft_dat=%3Cproquest_cross%3E2632756068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632756068&rft_id=info:pmid/33289946&rfr_iscdi=true |