Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD

In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-03, Vol.34 (5), p.3811-3827
Hauptverfasser: Wang, Kunshu, Wu, Xiangjun, Liu, Mengqi, Gao, Hang, Gao, Tiegang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3827
container_issue 5
container_start_page 3811
container_title Neural computing & applications
container_volume 34
creator Wang, Kunshu
Wu, Xiangjun
Liu, Mengqi
Gao, Hang
Gao, Tiegang
description In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix U or V . The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.
doi_str_mv 10.1007/s00521-021-06642-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632486312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632486312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH0mcZdUCBSFA4rG17NhpXaVJsRuk_j2xgsSOxcws5tw7movQJYVrClDcRICMUQKp8lwwcjhCEyo4JxwyeYwmUIq0EvwUncW4AQCRy2yCXpe6Wvttt_F48TwjRkdncXDfLkRvGodN41uLq67pAvZbvXIRr7317Qr3MfXHvvEaR7fHeuDePhfn6KTWTXQXv3OKPu5u3-dL8vRy_zCfPZGK03JPuKl1JWuecwE0s6woaaGFzRxIXYlayIxWhaGOCuMKsMwIxwqalUVuKeeS8Sm6Gn13ofvqXdyrTdeHdjipWM6ZkDmniWIjVYUuxuBqtQvDG-GgKKiUnBqTU5AqJacOg4iPojjA7cqFP-t_VD-kwW-t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632486312</pqid></control><display><type>article</type><title>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Kunshu ; Wu, Xiangjun ; Liu, Mengqi ; Gao, Hang ; Gao, Tiegang</creator><creatorcontrib>Wang, Kunshu ; Wu, Xiangjun ; Liu, Mengqi ; Gao, Hang ; Gao, Tiegang</creatorcontrib><description>In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix U or V . The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06642-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Color imagery ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Copyright ; Data integrity ; Data Mining and Knowledge Discovery ; Decomposition ; Deoxyribonucleic acid ; DNA ; Encryption ; Image processing ; Image Processing and Computer Vision ; Information industry ; Mathematical analysis ; Methods ; Original Article ; Probability and Statistics in Computer Science ; Robustness (mathematics) ; Run time (computers) ; Sequences ; Singular value decomposition ; Software ; Watermarking ; Wavelet transforms</subject><ispartof>Neural computing &amp; applications, 2022-03, Vol.34 (5), p.3811-3827</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</citedby><cites>FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06642-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06642-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Kunshu</creatorcontrib><creatorcontrib>Wu, Xiangjun</creatorcontrib><creatorcontrib>Liu, Mengqi</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Gao, Tiegang</creatorcontrib><title>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix U or V . The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Color imagery</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Copyright</subject><subject>Data integrity</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decomposition</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Encryption</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Information industry</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Robustness (mathematics)</subject><subject>Run time (computers)</subject><subject>Sequences</subject><subject>Singular value decomposition</subject><subject>Software</subject><subject>Watermarking</subject><subject>Wavelet transforms</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH0mcZdUCBSFA4rG17NhpXaVJsRuk_j2xgsSOxcws5tw7movQJYVrClDcRICMUQKp8lwwcjhCEyo4JxwyeYwmUIq0EvwUncW4AQCRy2yCXpe6Wvttt_F48TwjRkdncXDfLkRvGodN41uLq67pAvZbvXIRr7317Qr3MfXHvvEaR7fHeuDePhfn6KTWTXQXv3OKPu5u3-dL8vRy_zCfPZGK03JPuKl1JWuecwE0s6woaaGFzRxIXYlayIxWhaGOCuMKsMwIxwqalUVuKeeS8Sm6Gn13ofvqXdyrTdeHdjipWM6ZkDmniWIjVYUuxuBqtQvDG-GgKKiUnBqTU5AqJacOg4iPojjA7cqFP-t_VD-kwW-t</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Kunshu</creator><creator>Wu, Xiangjun</creator><creator>Liu, Mengqi</creator><creator>Gao, Hang</creator><creator>Gao, Tiegang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220301</creationdate><title>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</title><author>Wang, Kunshu ; Wu, Xiangjun ; Liu, Mengqi ; Gao, Hang ; Gao, Tiegang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Color imagery</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Copyright</topic><topic>Data integrity</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decomposition</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Encryption</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Information industry</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Robustness (mathematics)</topic><topic>Run time (computers)</topic><topic>Sequences</topic><topic>Singular value decomposition</topic><topic>Software</topic><topic>Watermarking</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunshu</creatorcontrib><creatorcontrib>Wu, Xiangjun</creatorcontrib><creatorcontrib>Liu, Mengqi</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Gao, Tiegang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunshu</au><au>Wu, Xiangjun</au><au>Liu, Mengqi</au><au>Gao, Hang</au><au>Gao, Tiegang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>3811</spage><epage>3827</epage><pages>3811-3827</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix U or V . The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06642-y</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-03, Vol.34 (5), p.3811-3827
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2632486312
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Color imagery
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Copyright
Data integrity
Data Mining and Knowledge Discovery
Decomposition
Deoxyribonucleic acid
DNA
Encryption
Image processing
Image Processing and Computer Vision
Information industry
Mathematical analysis
Methods
Original Article
Probability and Statistics in Computer Science
Robustness (mathematics)
Run time (computers)
Sequences
Singular value decomposition
Software
Watermarking
Wavelet transforms
title Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hachimoji%20DNA-based%20reversible%20blind%20color%20images%20hiding%20using%20Julia%20set%20and%20SVD&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Kunshu&rft.date=2022-03-01&rft.volume=34&rft.issue=5&rft.spage=3811&rft.epage=3827&rft.pages=3811-3827&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06642-y&rft_dat=%3Cproquest_cross%3E2632486312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632486312&rft_id=info:pmid/&rfr_iscdi=true