Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD
In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedd...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-03, Vol.34 (5), p.3811-3827 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3827 |
---|---|
container_issue | 5 |
container_start_page | 3811 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Wang, Kunshu Wu, Xiangjun Liu, Mengqi Gao, Hang Gao, Tiegang |
description | In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix
U
or
V
. The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness. |
doi_str_mv | 10.1007/s00521-021-06642-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2632486312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2632486312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH0mcZdUCBSFA4rG17NhpXaVJsRuk_j2xgsSOxcws5tw7movQJYVrClDcRICMUQKp8lwwcjhCEyo4JxwyeYwmUIq0EvwUncW4AQCRy2yCXpe6Wvttt_F48TwjRkdncXDfLkRvGodN41uLq67pAvZbvXIRr7317Qr3MfXHvvEaR7fHeuDePhfn6KTWTXQXv3OKPu5u3-dL8vRy_zCfPZGK03JPuKl1JWuecwE0s6woaaGFzRxIXYlayIxWhaGOCuMKsMwIxwqalUVuKeeS8Sm6Gn13ofvqXdyrTdeHdjipWM6ZkDmniWIjVYUuxuBqtQvDG-GgKKiUnBqTU5AqJacOg4iPojjA7cqFP-t_VD-kwW-t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632486312</pqid></control><display><type>article</type><title>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Kunshu ; Wu, Xiangjun ; Liu, Mengqi ; Gao, Hang ; Gao, Tiegang</creator><creatorcontrib>Wang, Kunshu ; Wu, Xiangjun ; Liu, Mengqi ; Gao, Hang ; Gao, Tiegang</creatorcontrib><description>In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix
U
or
V
. The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06642-y</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Color imagery ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Copyright ; Data integrity ; Data Mining and Knowledge Discovery ; Decomposition ; Deoxyribonucleic acid ; DNA ; Encryption ; Image processing ; Image Processing and Computer Vision ; Information industry ; Mathematical analysis ; Methods ; Original Article ; Probability and Statistics in Computer Science ; Robustness (mathematics) ; Run time (computers) ; Sequences ; Singular value decomposition ; Software ; Watermarking ; Wavelet transforms</subject><ispartof>Neural computing & applications, 2022-03, Vol.34 (5), p.3811-3827</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</citedby><cites>FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-021-06642-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-021-06642-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Kunshu</creatorcontrib><creatorcontrib>Wu, Xiangjun</creatorcontrib><creatorcontrib>Liu, Mengqi</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Gao, Tiegang</creatorcontrib><title>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix
U
or
V
. The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Color imagery</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Copyright</subject><subject>Data integrity</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decomposition</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Encryption</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Information industry</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Robustness (mathematics)</subject><subject>Run time (computers)</subject><subject>Sequences</subject><subject>Singular value decomposition</subject><subject>Software</subject><subject>Watermarking</subject><subject>Wavelet transforms</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMH0mcZdUCBSFA4rG17NhpXaVJsRuk_j2xgsSOxcws5tw7movQJYVrClDcRICMUQKp8lwwcjhCEyo4JxwyeYwmUIq0EvwUncW4AQCRy2yCXpe6Wvttt_F48TwjRkdncXDfLkRvGodN41uLq67pAvZbvXIRr7317Qr3MfXHvvEaR7fHeuDePhfn6KTWTXQXv3OKPu5u3-dL8vRy_zCfPZGK03JPuKl1JWuecwE0s6woaaGFzRxIXYlayIxWhaGOCuMKsMwIxwqalUVuKeeS8Sm6Gn13ofvqXdyrTdeHdjipWM6ZkDmniWIjVYUuxuBqtQvDG-GgKKiUnBqTU5AqJacOg4iPojjA7cqFP-t_VD-kwW-t</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wang, Kunshu</creator><creator>Wu, Xiangjun</creator><creator>Liu, Mengqi</creator><creator>Gao, Hang</creator><creator>Gao, Tiegang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220301</creationdate><title>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</title><author>Wang, Kunshu ; Wu, Xiangjun ; Liu, Mengqi ; Gao, Hang ; Gao, Tiegang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3bfac8f3634015d27917a4d5e08ac4f4851c7b1e14be70d2b4e2715976d133823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Color imagery</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Copyright</topic><topic>Data integrity</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decomposition</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Encryption</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Information industry</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Robustness (mathematics)</topic><topic>Run time (computers)</topic><topic>Sequences</topic><topic>Singular value decomposition</topic><topic>Software</topic><topic>Watermarking</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kunshu</creatorcontrib><creatorcontrib>Wu, Xiangjun</creatorcontrib><creatorcontrib>Liu, Mengqi</creatorcontrib><creatorcontrib>Gao, Hang</creatorcontrib><creatorcontrib>Gao, Tiegang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kunshu</au><au>Wu, Xiangjun</au><au>Liu, Mengqi</au><au>Gao, Hang</au><au>Gao, Tiegang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>34</volume><issue>5</issue><spage>3811</spage><epage>3827</epage><pages>3811-3827</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this paper, a novel reversible blind dual-color image watermarking algorithm is proposed by using singular value decomposition (SVD), Hachimoji Deoxyribonucleic Acid (HDNA) biogenetic encryption, coupled map lattice-based Tent–Sine system (TSS-CML) and mathematical Julia set. For watermark embedding, the watermark image is firstly encrypted using 8-bases HDNA sequences, TSS-CML and Julia set image. Then the encrypted HDNA watermark is obtained. Next, decompose the host image into equal non-overlapping blocks and utilize SVD on the randomly selected blocks. Further, embed the HDNA watermark through modifying the relation between the elements in the first column of the matrix
U
or
V
. The watermarked image can be eventually attained by carrying out the inverse SVD on all selected blocks. Also a reliable extraction algorithm is designed to recover the watermark from the possibly attacked watermarked images without resorting to the original image. Experimental and analysis results demonstrate that the proposed watermarking scheme has not only an excellent imperceptibility but a strong robustness against the common image processing attacks, geometric attacks and some composite attacks. In addition, the running time taken for hiding and exacting is about 1 s, which is suitable for real-time network transmission and application. In conclusion, the proposed method outperforms the related dual images watermarking algorithms in terms of time performance, extraction effect and robustness.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06642-y</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-03, Vol.34 (5), p.3811-3827 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2632486312 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Color imagery Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Copyright Data integrity Data Mining and Knowledge Discovery Decomposition Deoxyribonucleic acid DNA Encryption Image processing Image Processing and Computer Vision Information industry Mathematical analysis Methods Original Article Probability and Statistics in Computer Science Robustness (mathematics) Run time (computers) Sequences Singular value decomposition Software Watermarking Wavelet transforms |
title | Hachimoji DNA-based reversible blind color images hiding using Julia set and SVD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hachimoji%20DNA-based%20reversible%20blind%20color%20images%20hiding%20using%20Julia%20set%20and%20SVD&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Wang,%20Kunshu&rft.date=2022-03-01&rft.volume=34&rft.issue=5&rft.spage=3811&rft.epage=3827&rft.pages=3811-3827&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06642-y&rft_dat=%3Cproquest_cross%3E2632486312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2632486312&rft_id=info:pmid/&rfr_iscdi=true |