One-Shot Learning-Based Animal Video Segmentation
Deep learning-based video segmentation methods can offer a good performance after being trained on the large-scale pixel labeled datasets. However, a pixel-wise manual labeling of animal images is challenging and time consuming due to irregular contours and motion blur. To achieve desirable tradeoff...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-06, Vol.18 (6), p.3799-3807 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3807 |
---|---|
container_issue | 6 |
container_start_page | 3799 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Xue, Tengfei Qiao, Yongliang Kong, He Su, Daobilige Pan, Shirui Rafique, Khalid Sukkarieh, Salah |
description | Deep learning-based video segmentation methods can offer a good performance after being trained on the large-scale pixel labeled datasets. However, a pixel-wise manual labeling of animal images is challenging and time consuming due to irregular contours and motion blur. To achieve desirable tradeoffs between the accuracy and speed, a novel one-shot learning-based approach is proposed in this article to segment animal video with only one labeled frame. The proposed approach consists of the following three main modules: guidance frame selection utilizes "BubbleNet" to choose one frame for manual labeling, which can leverage the fine-tuning effects of the only labeled frame; Xception-based fully convolutional network localizes dense prediction using depthwise separable convolutions based on one single labeled frame; and postprocessing is used to remove outliers and sharpen object contours, which consists of two submodules-test time augmentation and conditional random field. Extensive experiments have been conducted on the DAVIS 2016 animal dataset. Our proposed video segmentation approach achieved mean intersection-over-union score of 89.5% on the DAVIS 2016 animal dataset with less run time, and outperformed the state-of-art methods (OSVOS and OSMN). The proposed one-shot learning-based approach achieves real-time and automatic segmentation of animals with only one labeled video frame. This can be potentially used further as a baseline for intelligent perception-based monitoring of animals and other domain-specific applications. 1 1
The source code, datasets, and pre-trained weights for this work are publicly [Online]. Available: https://github.com/tengfeixue-victor/One-Shot-Animal-Video-Segmentation . |
doi_str_mv | 10.1109/TII.2021.3117020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2631959390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9556571</ieee_id><sourcerecordid>2631959390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-4accffd6feaebf9d5bed828fa00c11beefabce5567e9b9ee5ec4f5ec88d60d803</originalsourceid><addsrcrecordid>eNo9kEFPAjEQhRujiYjeTbxs4rk409Ld7RGJKAkJB9Br092d4hLoYrsc_PeWQLzMm8N7My8fY48II0TQL-v5fCRA4EgiFiDgig1Qj5EDKLhOu1LIpQB5y-5i3ALIAqQeMFx64qvvrs8WZINv_Ya_2khNNvHt3u6yr7ahLlvRZk--t33b-Xt24-wu0sNFh-xz9raefvDF8n0-nSx4LTT2fGzr2rkmd2SpcrpRFTWlKJ0FqBErImermpTKC9KVJlJUj10aZdnk0JQgh-z5fPcQup8jxd5su2Pw6aURuUSttNQnF5xddehiDOTMIaTi4dcgmBMYk8CYExhzAZMiT-dIS0T_dp2qqALlH8WNXzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959390</pqid></control><display><type>article</type><title>One-Shot Learning-Based Animal Video Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Xue, Tengfei ; Qiao, Yongliang ; Kong, He ; Su, Daobilige ; Pan, Shirui ; Rafique, Khalid ; Sukkarieh, Salah</creator><creatorcontrib>Xue, Tengfei ; Qiao, Yongliang ; Kong, He ; Su, Daobilige ; Pan, Shirui ; Rafique, Khalid ; Sukkarieh, Salah</creatorcontrib><description>Deep learning-based video segmentation methods can offer a good performance after being trained on the large-scale pixel labeled datasets. However, a pixel-wise manual labeling of animal images is challenging and time consuming due to irregular contours and motion blur. To achieve desirable tradeoffs between the accuracy and speed, a novel one-shot learning-based approach is proposed in this article to segment animal video with only one labeled frame. The proposed approach consists of the following three main modules: guidance frame selection utilizes "BubbleNet" to choose one frame for manual labeling, which can leverage the fine-tuning effects of the only labeled frame; Xception-based fully convolutional network localizes dense prediction using depthwise separable convolutions based on one single labeled frame; and postprocessing is used to remove outliers and sharpen object contours, which consists of two submodules-test time augmentation and conditional random field. Extensive experiments have been conducted on the DAVIS 2016 animal dataset. Our proposed video segmentation approach achieved mean intersection-over-union score of 89.5% on the DAVIS 2016 animal dataset with less run time, and outperformed the state-of-art methods (OSVOS and OSMN). The proposed one-shot learning-based approach achieves real-time and automatic segmentation of animals with only one labeled video frame. This can be potentially used further as a baseline for intelligent perception-based monitoring of animals and other domain-specific applications.<xref ref-type="fn" rid="fn1"> 1 1
The source code, datasets, and pre-trained weights for this work are publicly [Online]. Available: https://github.com/tengfeixue-victor/One-Shot-Animal-Video-Segmentation .</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3117020</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Animal monitoring ; Animals ; Blurring ; Conditional random fields ; Contours ; convolutional neural network (CNN) ; Datasets ; Deep learning ; Feature extraction ; Image segmentation ; Informatics ; Labeling ; Labelling ; one-shot learning ; Outliers (statistics) ; Pixels ; Source code ; Streaming media ; Testing time ; video segmentation ; Video sequences</subject><ispartof>IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.3799-3807</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-4accffd6feaebf9d5bed828fa00c11beefabce5567e9b9ee5ec4f5ec88d60d803</citedby><cites>FETCH-LOGICAL-c291t-4accffd6feaebf9d5bed828fa00c11beefabce5567e9b9ee5ec4f5ec88d60d803</cites><orcidid>0000-0003-0794-527X ; 0000-0002-1382-4186 ; 0000-0003-2142-0154 ; 0000-0003-3871-2321 ; 0000-0001-7395-5367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9556571$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9556571$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xue, Tengfei</creatorcontrib><creatorcontrib>Qiao, Yongliang</creatorcontrib><creatorcontrib>Kong, He</creatorcontrib><creatorcontrib>Su, Daobilige</creatorcontrib><creatorcontrib>Pan, Shirui</creatorcontrib><creatorcontrib>Rafique, Khalid</creatorcontrib><creatorcontrib>Sukkarieh, Salah</creatorcontrib><title>One-Shot Learning-Based Animal Video Segmentation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Deep learning-based video segmentation methods can offer a good performance after being trained on the large-scale pixel labeled datasets. However, a pixel-wise manual labeling of animal images is challenging and time consuming due to irregular contours and motion blur. To achieve desirable tradeoffs between the accuracy and speed, a novel one-shot learning-based approach is proposed in this article to segment animal video with only one labeled frame. The proposed approach consists of the following three main modules: guidance frame selection utilizes "BubbleNet" to choose one frame for manual labeling, which can leverage the fine-tuning effects of the only labeled frame; Xception-based fully convolutional network localizes dense prediction using depthwise separable convolutions based on one single labeled frame; and postprocessing is used to remove outliers and sharpen object contours, which consists of two submodules-test time augmentation and conditional random field. Extensive experiments have been conducted on the DAVIS 2016 animal dataset. Our proposed video segmentation approach achieved mean intersection-over-union score of 89.5% on the DAVIS 2016 animal dataset with less run time, and outperformed the state-of-art methods (OSVOS and OSMN). The proposed one-shot learning-based approach achieves real-time and automatic segmentation of animals with only one labeled video frame. This can be potentially used further as a baseline for intelligent perception-based monitoring of animals and other domain-specific applications.<xref ref-type="fn" rid="fn1"> 1 1
The source code, datasets, and pre-trained weights for this work are publicly [Online]. Available: https://github.com/tengfeixue-victor/One-Shot-Animal-Video-Segmentation .</description><subject>Animal monitoring</subject><subject>Animals</subject><subject>Blurring</subject><subject>Conditional random fields</subject><subject>Contours</subject><subject>convolutional neural network (CNN)</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Informatics</subject><subject>Labeling</subject><subject>Labelling</subject><subject>one-shot learning</subject><subject>Outliers (statistics)</subject><subject>Pixels</subject><subject>Source code</subject><subject>Streaming media</subject><subject>Testing time</subject><subject>video segmentation</subject><subject>Video sequences</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPAjEQhRujiYjeTbxs4rk409Ld7RGJKAkJB9Br092d4hLoYrsc_PeWQLzMm8N7My8fY48II0TQL-v5fCRA4EgiFiDgig1Qj5EDKLhOu1LIpQB5y-5i3ALIAqQeMFx64qvvrs8WZINv_Ya_2khNNvHt3u6yr7ahLlvRZk--t33b-Xt24-wu0sNFh-xz9raefvDF8n0-nSx4LTT2fGzr2rkmd2SpcrpRFTWlKJ0FqBErImermpTKC9KVJlJUj10aZdnk0JQgh-z5fPcQup8jxd5su2Pw6aURuUSttNQnF5xddehiDOTMIaTi4dcgmBMYk8CYExhzAZMiT-dIS0T_dp2qqALlH8WNXzk</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xue, Tengfei</creator><creator>Qiao, Yongliang</creator><creator>Kong, He</creator><creator>Su, Daobilige</creator><creator>Pan, Shirui</creator><creator>Rafique, Khalid</creator><creator>Sukkarieh, Salah</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0794-527X</orcidid><orcidid>https://orcid.org/0000-0002-1382-4186</orcidid><orcidid>https://orcid.org/0000-0003-2142-0154</orcidid><orcidid>https://orcid.org/0000-0003-3871-2321</orcidid><orcidid>https://orcid.org/0000-0001-7395-5367</orcidid></search><sort><creationdate>20220601</creationdate><title>One-Shot Learning-Based Animal Video Segmentation</title><author>Xue, Tengfei ; Qiao, Yongliang ; Kong, He ; Su, Daobilige ; Pan, Shirui ; Rafique, Khalid ; Sukkarieh, Salah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-4accffd6feaebf9d5bed828fa00c11beefabce5567e9b9ee5ec4f5ec88d60d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal monitoring</topic><topic>Animals</topic><topic>Blurring</topic><topic>Conditional random fields</topic><topic>Contours</topic><topic>convolutional neural network (CNN)</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Informatics</topic><topic>Labeling</topic><topic>Labelling</topic><topic>one-shot learning</topic><topic>Outliers (statistics)</topic><topic>Pixels</topic><topic>Source code</topic><topic>Streaming media</topic><topic>Testing time</topic><topic>video segmentation</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Xue, Tengfei</creatorcontrib><creatorcontrib>Qiao, Yongliang</creatorcontrib><creatorcontrib>Kong, He</creatorcontrib><creatorcontrib>Su, Daobilige</creatorcontrib><creatorcontrib>Pan, Shirui</creatorcontrib><creatorcontrib>Rafique, Khalid</creatorcontrib><creatorcontrib>Sukkarieh, Salah</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xue, Tengfei</au><au>Qiao, Yongliang</au><au>Kong, He</au><au>Su, Daobilige</au><au>Pan, Shirui</au><au>Rafique, Khalid</au><au>Sukkarieh, Salah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Shot Learning-Based Animal Video Segmentation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>3799</spage><epage>3807</epage><pages>3799-3807</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Deep learning-based video segmentation methods can offer a good performance after being trained on the large-scale pixel labeled datasets. However, a pixel-wise manual labeling of animal images is challenging and time consuming due to irregular contours and motion blur. To achieve desirable tradeoffs between the accuracy and speed, a novel one-shot learning-based approach is proposed in this article to segment animal video with only one labeled frame. The proposed approach consists of the following three main modules: guidance frame selection utilizes "BubbleNet" to choose one frame for manual labeling, which can leverage the fine-tuning effects of the only labeled frame; Xception-based fully convolutional network localizes dense prediction using depthwise separable convolutions based on one single labeled frame; and postprocessing is used to remove outliers and sharpen object contours, which consists of two submodules-test time augmentation and conditional random field. Extensive experiments have been conducted on the DAVIS 2016 animal dataset. Our proposed video segmentation approach achieved mean intersection-over-union score of 89.5% on the DAVIS 2016 animal dataset with less run time, and outperformed the state-of-art methods (OSVOS and OSMN). The proposed one-shot learning-based approach achieves real-time and automatic segmentation of animals with only one labeled video frame. This can be potentially used further as a baseline for intelligent perception-based monitoring of animals and other domain-specific applications.<xref ref-type="fn" rid="fn1"> 1 1
The source code, datasets, and pre-trained weights for this work are publicly [Online]. Available: https://github.com/tengfeixue-victor/One-Shot-Animal-Video-Segmentation .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3117020</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0794-527X</orcidid><orcidid>https://orcid.org/0000-0002-1382-4186</orcidid><orcidid>https://orcid.org/0000-0003-2142-0154</orcidid><orcidid>https://orcid.org/0000-0003-3871-2321</orcidid><orcidid>https://orcid.org/0000-0001-7395-5367</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.3799-3807 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2631959390 |
source | IEEE Electronic Library (IEL) |
subjects | Animal monitoring Animals Blurring Conditional random fields Contours convolutional neural network (CNN) Datasets Deep learning Feature extraction Image segmentation Informatics Labeling Labelling one-shot learning Outliers (statistics) Pixels Source code Streaming media Testing time video segmentation Video sequences |
title | One-Shot Learning-Based Animal Video Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Shot%20Learning-Based%20Animal%20Video%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Xue,%20Tengfei&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=3799&rft.epage=3807&rft.pages=3799-3807&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3117020&rft_dat=%3Cproquest_RIE%3E2631959390%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631959390&rft_id=info:pmid/&rft_ieee_id=9556571&rfr_iscdi=true |