Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks

ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2022-06, Vol.18 (6), p.4224-4233
Hauptverfasser: Zhu, Zongwei, Zhai, Wenjie, Liu, Huanghe, Geng, Jiawei, Zhou, Mingliang, Ji, Cheng, Jia, Gangyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4233
container_issue 6
container_start_page 4224
container_title IEEE transactions on industrial informatics
container_volume 18
creator Zhu, Zongwei
Zhai, Wenjie
Liu, Huanghe
Geng, Jiawei
Zhou, Mingliang
Ji, Cheng
Jia, Gangyong
description ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.
doi_str_mv 10.1109/TII.2021.3121783
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2631959175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583855</ieee_id><sourcerecordid>2631959175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxRujiYjeTbxs4rm4f1i6642gSA1KInhulnYWFktbd7dB_Ap-aYslnuZl5vfeJC8IrgnuEYLl3SKOexRT0mOEkkiwk6BDZJ-EGHN82mjOScgoZufBhXMbjFmEmewEP8_1apWDDd_AvYK_R0M0zuHLLHNAqsjQxKzW4bwCyFBLoFnlzdZ8K2_KAr2AX5cZ0qVFceFt7Q7LB_CQ_p3ne-dhi0yjSu13ykL4ANoUTVpcZLXz1qgcNam70n64y-BMq9zB1XF2g_fx42I0Caezp3g0nIYplcSHWhEQXEZSA41ICphmkrNMcy4GKYv6S0GVEkugTKiljlKmMJcDPmAsFRw0Zt3gts2tbPlZg_PJpqxt0bxM6IARySWJeEPhlkpt6ZwFnVTWbJXdJwQnh8qTpvLkUHlyrLyx3LQWAwD_uOSCCc7ZL68TfkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959175</pqid></control><display><type>article</type><title>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Zongwei ; Zhai, Wenjie ; Liu, Huanghe ; Geng, Jiawei ; Zhou, Mingliang ; Ji, Cheng ; Jia, Gangyong</creator><creatorcontrib>Zhu, Zongwei ; Zhai, Wenjie ; Liu, Huanghe ; Geng, Jiawei ; Zhou, Mingliang ; Ji, Cheng ; Jia, Gangyong</creatorcontrib><description>ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3121783</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Computer architecture ; Equivalence ; Fault diagnosis ; Feature extraction ; Image classification ; Industrial applications ; Inference ; inference acceleration ; Internet ; intrusion detection system (IDN) ; Intrusion detection systems ; Kernel ; Memory management ; Network latency ; Network topologies ; Optimization ; optimization method ; Parallel processing ; ResNets ; software-defined industrial networks (SDINs) ; Software-defined networking ; Topology ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.4224-4233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</citedby><cites>FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</cites><orcidid>0000-0001-7405-9820 ; 0000-0002-8335-0932 ; 0000-0003-3607-2631 ; 0000-0002-1874-3641 ; 0000-0002-2525-8070 ; 0000-0002-2761-7436 ; 0000-0002-2944-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9583855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9583855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Zongwei</creatorcontrib><creatorcontrib>Zhai, Wenjie</creatorcontrib><creatorcontrib>Liu, Huanghe</creatorcontrib><creatorcontrib>Geng, Jiawei</creatorcontrib><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Jia, Gangyong</creatorcontrib><title>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.</description><subject>Acceleration</subject><subject>Computer architecture</subject><subject>Equivalence</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Industrial applications</subject><subject>Inference</subject><subject>inference acceleration</subject><subject>Internet</subject><subject>intrusion detection system (IDN)</subject><subject>Intrusion detection systems</subject><subject>Kernel</subject><subject>Memory management</subject><subject>Network latency</subject><subject>Network topologies</subject><subject>Optimization</subject><subject>optimization method</subject><subject>Parallel processing</subject><subject>ResNets</subject><subject>software-defined industrial networks (SDINs)</subject><subject>Software-defined networking</subject><subject>Topology</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxRujiYjeTbxs4rm4f1i6642gSA1KInhulnYWFktbd7dB_Ap-aYslnuZl5vfeJC8IrgnuEYLl3SKOexRT0mOEkkiwk6BDZJ-EGHN82mjOScgoZufBhXMbjFmEmewEP8_1apWDDd_AvYK_R0M0zuHLLHNAqsjQxKzW4bwCyFBLoFnlzdZ8K2_KAr2AX5cZ0qVFceFt7Q7LB_CQ_p3ne-dhi0yjSu13ykL4ANoUTVpcZLXz1qgcNam70n64y-BMq9zB1XF2g_fx42I0Caezp3g0nIYplcSHWhEQXEZSA41ICphmkrNMcy4GKYv6S0GVEkugTKiljlKmMJcDPmAsFRw0Zt3gts2tbPlZg_PJpqxt0bxM6IARySWJeEPhlkpt6ZwFnVTWbJXdJwQnh8qTpvLkUHlyrLyx3LQWAwD_uOSCCc7ZL68TfkI</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhu, Zongwei</creator><creator>Zhai, Wenjie</creator><creator>Liu, Huanghe</creator><creator>Geng, Jiawei</creator><creator>Zhou, Mingliang</creator><creator>Ji, Cheng</creator><creator>Jia, Gangyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7405-9820</orcidid><orcidid>https://orcid.org/0000-0002-8335-0932</orcidid><orcidid>https://orcid.org/0000-0003-3607-2631</orcidid><orcidid>https://orcid.org/0000-0002-1874-3641</orcidid><orcidid>https://orcid.org/0000-0002-2525-8070</orcidid><orcidid>https://orcid.org/0000-0002-2761-7436</orcidid><orcidid>https://orcid.org/0000-0002-2944-4006</orcidid></search><sort><creationdate>20220601</creationdate><title>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</title><author>Zhu, Zongwei ; Zhai, Wenjie ; Liu, Huanghe ; Geng, Jiawei ; Zhou, Mingliang ; Ji, Cheng ; Jia, Gangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Computer architecture</topic><topic>Equivalence</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Industrial applications</topic><topic>Inference</topic><topic>inference acceleration</topic><topic>Internet</topic><topic>intrusion detection system (IDN)</topic><topic>Intrusion detection systems</topic><topic>Kernel</topic><topic>Memory management</topic><topic>Network latency</topic><topic>Network topologies</topic><topic>Optimization</topic><topic>optimization method</topic><topic>Parallel processing</topic><topic>ResNets</topic><topic>software-defined industrial networks (SDINs)</topic><topic>Software-defined networking</topic><topic>Topology</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zongwei</creatorcontrib><creatorcontrib>Zhai, Wenjie</creatorcontrib><creatorcontrib>Liu, Huanghe</creatorcontrib><creatorcontrib>Geng, Jiawei</creatorcontrib><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Jia, Gangyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Zongwei</au><au>Zhai, Wenjie</au><au>Liu, Huanghe</au><au>Geng, Jiawei</au><au>Zhou, Mingliang</au><au>Ji, Cheng</au><au>Jia, Gangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>4224</spage><epage>4233</epage><pages>4224-4233</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3121783</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7405-9820</orcidid><orcidid>https://orcid.org/0000-0002-8335-0932</orcidid><orcidid>https://orcid.org/0000-0003-3607-2631</orcidid><orcidid>https://orcid.org/0000-0002-1874-3641</orcidid><orcidid>https://orcid.org/0000-0002-2525-8070</orcidid><orcidid>https://orcid.org/0000-0002-2761-7436</orcidid><orcidid>https://orcid.org/0000-0002-2944-4006</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.4224-4233
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2631959175
source IEEE Electronic Library (IEL)
subjects Acceleration
Computer architecture
Equivalence
Fault diagnosis
Feature extraction
Image classification
Industrial applications
Inference
inference acceleration
Internet
intrusion detection system (IDN)
Intrusion detection systems
Kernel
Memory management
Network latency
Network topologies
Optimization
optimization method
Parallel processing
ResNets
software-defined industrial networks (SDINs)
Software-defined networking
Topology
Training
title Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Juggler-ResNet:%20A%20Flexible%20and%20High-Speed%20ResNet%20Optimization%20Method%20for%20Intrusion%20Detection%20System%20in%20Software-Defined%20Industrial%20Networks&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhu,%20Zongwei&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=4224&rft.epage=4233&rft.pages=4224-4233&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3121783&rft_dat=%3Cproquest_RIE%3E2631959175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631959175&rft_id=info:pmid/&rft_ieee_id=9583855&rfr_iscdi=true