Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks
ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-06, Vol.18 (6), p.4224-4233 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4233 |
---|---|
container_issue | 6 |
container_start_page | 4224 |
container_title | IEEE transactions on industrial informatics |
container_volume | 18 |
creator | Zhu, Zongwei Zhai, Wenjie Liu, Huanghe Geng, Jiawei Zhou, Mingliang Ji, Cheng Jia, Gangyong |
description | ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance. |
doi_str_mv | 10.1109/TII.2021.3121783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2631959175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9583855</ieee_id><sourcerecordid>2631959175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxRujiYjeTbxs4rm4f1i6642gSA1KInhulnYWFktbd7dB_Ap-aYslnuZl5vfeJC8IrgnuEYLl3SKOexRT0mOEkkiwk6BDZJ-EGHN82mjOScgoZufBhXMbjFmEmewEP8_1apWDDd_AvYK_R0M0zuHLLHNAqsjQxKzW4bwCyFBLoFnlzdZ8K2_KAr2AX5cZ0qVFceFt7Q7LB_CQ_p3ne-dhi0yjSu13ykL4ANoUTVpcZLXz1qgcNam70n64y-BMq9zB1XF2g_fx42I0Caezp3g0nIYplcSHWhEQXEZSA41ICphmkrNMcy4GKYv6S0GVEkugTKiljlKmMJcDPmAsFRw0Zt3gts2tbPlZg_PJpqxt0bxM6IARySWJeEPhlkpt6ZwFnVTWbJXdJwQnh8qTpvLkUHlyrLyx3LQWAwD_uOSCCc7ZL68TfkI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631959175</pqid></control><display><type>article</type><title>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Zongwei ; Zhai, Wenjie ; Liu, Huanghe ; Geng, Jiawei ; Zhou, Mingliang ; Ji, Cheng ; Jia, Gangyong</creator><creatorcontrib>Zhu, Zongwei ; Zhai, Wenjie ; Liu, Huanghe ; Geng, Jiawei ; Zhou, Mingliang ; Ji, Cheng ; Jia, Gangyong</creatorcontrib><description>ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3121783</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Computer architecture ; Equivalence ; Fault diagnosis ; Feature extraction ; Image classification ; Industrial applications ; Inference ; inference acceleration ; Internet ; intrusion detection system (IDN) ; Intrusion detection systems ; Kernel ; Memory management ; Network latency ; Network topologies ; Optimization ; optimization method ; Parallel processing ; ResNets ; software-defined industrial networks (SDINs) ; Software-defined networking ; Topology ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.4224-4233</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</citedby><cites>FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</cites><orcidid>0000-0001-7405-9820 ; 0000-0002-8335-0932 ; 0000-0003-3607-2631 ; 0000-0002-1874-3641 ; 0000-0002-2525-8070 ; 0000-0002-2761-7436 ; 0000-0002-2944-4006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9583855$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9583855$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Zongwei</creatorcontrib><creatorcontrib>Zhai, Wenjie</creatorcontrib><creatorcontrib>Liu, Huanghe</creatorcontrib><creatorcontrib>Geng, Jiawei</creatorcontrib><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Jia, Gangyong</creatorcontrib><title>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.</description><subject>Acceleration</subject><subject>Computer architecture</subject><subject>Equivalence</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Industrial applications</subject><subject>Inference</subject><subject>inference acceleration</subject><subject>Internet</subject><subject>intrusion detection system (IDN)</subject><subject>Intrusion detection systems</subject><subject>Kernel</subject><subject>Memory management</subject><subject>Network latency</subject><subject>Network topologies</subject><subject>Optimization</subject><subject>optimization method</subject><subject>Parallel processing</subject><subject>ResNets</subject><subject>software-defined industrial networks (SDINs)</subject><subject>Software-defined networking</subject><subject>Topology</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwkAQxRujiYjeTbxs4rm4f1i6642gSA1KInhulnYWFktbd7dB_Ap-aYslnuZl5vfeJC8IrgnuEYLl3SKOexRT0mOEkkiwk6BDZJ-EGHN82mjOScgoZufBhXMbjFmEmewEP8_1apWDDd_AvYK_R0M0zuHLLHNAqsjQxKzW4bwCyFBLoFnlzdZ8K2_KAr2AX5cZ0qVFceFt7Q7LB_CQ_p3ne-dhi0yjSu13ykL4ANoUTVpcZLXz1qgcNam70n64y-BMq9zB1XF2g_fx42I0Caezp3g0nIYplcSHWhEQXEZSA41ICphmkrNMcy4GKYv6S0GVEkugTKiljlKmMJcDPmAsFRw0Zt3gts2tbPlZg_PJpqxt0bxM6IARySWJeEPhlkpt6ZwFnVTWbJXdJwQnh8qTpvLkUHlyrLyx3LQWAwD_uOSCCc7ZL68TfkI</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Zhu, Zongwei</creator><creator>Zhai, Wenjie</creator><creator>Liu, Huanghe</creator><creator>Geng, Jiawei</creator><creator>Zhou, Mingliang</creator><creator>Ji, Cheng</creator><creator>Jia, Gangyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7405-9820</orcidid><orcidid>https://orcid.org/0000-0002-8335-0932</orcidid><orcidid>https://orcid.org/0000-0003-3607-2631</orcidid><orcidid>https://orcid.org/0000-0002-1874-3641</orcidid><orcidid>https://orcid.org/0000-0002-2525-8070</orcidid><orcidid>https://orcid.org/0000-0002-2761-7436</orcidid><orcidid>https://orcid.org/0000-0002-2944-4006</orcidid></search><sort><creationdate>20220601</creationdate><title>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</title><author>Zhu, Zongwei ; Zhai, Wenjie ; Liu, Huanghe ; Geng, Jiawei ; Zhou, Mingliang ; Ji, Cheng ; Jia, Gangyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-fa1e85979fe271ce02d953df5586c374b82aa8be238abf7c3a05965633c85ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Computer architecture</topic><topic>Equivalence</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Industrial applications</topic><topic>Inference</topic><topic>inference acceleration</topic><topic>Internet</topic><topic>intrusion detection system (IDN)</topic><topic>Intrusion detection systems</topic><topic>Kernel</topic><topic>Memory management</topic><topic>Network latency</topic><topic>Network topologies</topic><topic>Optimization</topic><topic>optimization method</topic><topic>Parallel processing</topic><topic>ResNets</topic><topic>software-defined industrial networks (SDINs)</topic><topic>Software-defined networking</topic><topic>Topology</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zongwei</creatorcontrib><creatorcontrib>Zhai, Wenjie</creatorcontrib><creatorcontrib>Liu, Huanghe</creatorcontrib><creatorcontrib>Geng, Jiawei</creatorcontrib><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Ji, Cheng</creatorcontrib><creatorcontrib>Jia, Gangyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Zongwei</au><au>Zhai, Wenjie</au><au>Liu, Huanghe</au><au>Geng, Jiawei</au><au>Zhou, Mingliang</au><au>Ji, Cheng</au><au>Jia, Gangyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>4224</spage><epage>4233</epage><pages>4224-4233</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>ResNets are widely used in the intrusion detection system (IDS) of software-defined industrial network to construct accurate intelligence detection of network attacks. However, the IDS based on ResNets has a long detecting interval because of the fine-grained operator and intermediate outcomes of the multi-branch architecture of ResNets. To address this problem, in this article, we propose Juggler-ResNet with a fusible residual structure that preserves the feature extraction ability of the residual structure and enables equivalent transformation to linear topology to support low latency inference service in the industrial application (e.g., malicious network behavior detection, fault diagnosis, etc.). First, we propose a fusible multibranch residual structure to avoid gradient vanishing problems in the training phase. Second, we convert it to linear-topology by using a set of equivalent fusion operators. Finally, the linear-topology model is deployed to accelerate inference speed. Our experimental results on CIFAR-10 and CIFAR-100 show that fusible residual structure can achieve 2.08-4.3x acceleration with state-of-the-art level accuracy performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3121783</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7405-9820</orcidid><orcidid>https://orcid.org/0000-0002-8335-0932</orcidid><orcidid>https://orcid.org/0000-0003-3607-2631</orcidid><orcidid>https://orcid.org/0000-0002-1874-3641</orcidid><orcidid>https://orcid.org/0000-0002-2525-8070</orcidid><orcidid>https://orcid.org/0000-0002-2761-7436</orcidid><orcidid>https://orcid.org/0000-0002-2944-4006</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2022-06, Vol.18 (6), p.4224-4233 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2631959175 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Computer architecture Equivalence Fault diagnosis Feature extraction Image classification Industrial applications Inference inference acceleration Internet intrusion detection system (IDN) Intrusion detection systems Kernel Memory management Network latency Network topologies Optimization optimization method Parallel processing ResNets software-defined industrial networks (SDINs) Software-defined networking Topology Training |
title | Juggler-ResNet: A Flexible and High-Speed ResNet Optimization Method for Intrusion Detection System in Software-Defined Industrial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Juggler-ResNet:%20A%20Flexible%20and%20High-Speed%20ResNet%20Optimization%20Method%20for%20Intrusion%20Detection%20System%20in%20Software-Defined%20Industrial%20Networks&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhu,%20Zongwei&rft.date=2022-06-01&rft.volume=18&rft.issue=6&rft.spage=4224&rft.epage=4233&rft.pages=4224-4233&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3121783&rft_dat=%3Cproquest_RIE%3E2631959175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631959175&rft_id=info:pmid/&rft_ieee_id=9583855&rfr_iscdi=true |