StyleBERT: Chinese pretraining by font style information

With the success of down streaming task using English pre-trained language model, the pre-trained Chinese language model is also necessary to get a better performance of Chinese NLP task. Unlike the English language, Chinese has its special characters such as glyph information. So in this article, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-02
Hauptverfasser: Lv, Chao, Zhang, Han, Du, XinKai, Zhang, Yunhao, Huang, Ying, Li, Wenhao, Han, Jia, Gu, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lv, Chao
Zhang, Han
Du, XinKai
Zhang, Yunhao
Huang, Ying
Li, Wenhao
Han, Jia
Gu, Shanshan
description With the success of down streaming task using English pre-trained language model, the pre-trained Chinese language model is also necessary to get a better performance of Chinese NLP task. Unlike the English language, Chinese has its special characters such as glyph information. So in this article, we propose the Chinese pre-trained language model StyleBERT which incorporate the following embedding information to enhance the savvy of language model, such as word, pinyin, five stroke and chaizi. The experiments show that the model achieves well performances on a wide range of Chinese NLP tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2631756806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631756806</sourcerecordid><originalsourceid>FETCH-proquest_journals_26317568063</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC2li0uBoqThr95JCoin1pealQ_9eBT_A6Q73rEjGhSgLfeB8Q3LEgTHGVcWlFBnRt7SM9tRc2yOtHx4sWjpFm6Lx4OFO-4W6AInil1EPLsSnST7AjqydGdHmv27J_ty09aWYYnjNFlM3hDnCZ3VcibKSSjMl_lNvNZE2GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631756806</pqid></control><display><type>article</type><title>StyleBERT: Chinese pretraining by font style information</title><source>Freely Accessible Journals</source><creator>Lv, Chao ; Zhang, Han ; Du, XinKai ; Zhang, Yunhao ; Huang, Ying ; Li, Wenhao ; Han, Jia ; Gu, Shanshan</creator><creatorcontrib>Lv, Chao ; Zhang, Han ; Du, XinKai ; Zhang, Yunhao ; Huang, Ying ; Li, Wenhao ; Han, Jia ; Gu, Shanshan</creatorcontrib><description>With the success of down streaming task using English pre-trained language model, the pre-trained Chinese language model is also necessary to get a better performance of Chinese NLP task. Unlike the English language, Chinese has its special characters such as glyph information. So in this article, we propose the Chinese pre-trained language model StyleBERT which incorporate the following embedding information to enhance the savvy of language model, such as word, pinyin, five stroke and chaizi. The experiments show that the model achieves well performances on a wide range of Chinese NLP tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>English language ; Language</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Lv, Chao</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Du, XinKai</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Li, Wenhao</creatorcontrib><creatorcontrib>Han, Jia</creatorcontrib><creatorcontrib>Gu, Shanshan</creatorcontrib><title>StyleBERT: Chinese pretraining by font style information</title><title>arXiv.org</title><description>With the success of down streaming task using English pre-trained language model, the pre-trained Chinese language model is also necessary to get a better performance of Chinese NLP task. Unlike the English language, Chinese has its special characters such as glyph information. So in this article, we propose the Chinese pre-trained language model StyleBERT which incorporate the following embedding information to enhance the savvy of language model, such as word, pinyin, five stroke and chaizi. The experiments show that the model achieves well performances on a wide range of Chinese NLP tasks.</description><subject>English language</subject><subject>Language</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC2li0uBoqThr95JCoin1pealQ_9eBT_A6Q73rEjGhSgLfeB8Q3LEgTHGVcWlFBnRt7SM9tRc2yOtHx4sWjpFm6Lx4OFO-4W6AInil1EPLsSnST7AjqydGdHmv27J_ty09aWYYnjNFlM3hDnCZ3VcibKSSjMl_lNvNZE2GA</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Lv, Chao</creator><creator>Zhang, Han</creator><creator>Du, XinKai</creator><creator>Zhang, Yunhao</creator><creator>Huang, Ying</creator><creator>Li, Wenhao</creator><creator>Han, Jia</creator><creator>Gu, Shanshan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220223</creationdate><title>StyleBERT: Chinese pretraining by font style information</title><author>Lv, Chao ; Zhang, Han ; Du, XinKai ; Zhang, Yunhao ; Huang, Ying ; Li, Wenhao ; Han, Jia ; Gu, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26317568063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>English language</topic><topic>Language</topic><toplevel>online_resources</toplevel><creatorcontrib>Lv, Chao</creatorcontrib><creatorcontrib>Zhang, Han</creatorcontrib><creatorcontrib>Du, XinKai</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Huang, Ying</creatorcontrib><creatorcontrib>Li, Wenhao</creatorcontrib><creatorcontrib>Han, Jia</creatorcontrib><creatorcontrib>Gu, Shanshan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Chao</au><au>Zhang, Han</au><au>Du, XinKai</au><au>Zhang, Yunhao</au><au>Huang, Ying</au><au>Li, Wenhao</au><au>Han, Jia</au><au>Gu, Shanshan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>StyleBERT: Chinese pretraining by font style information</atitle><jtitle>arXiv.org</jtitle><date>2022-02-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>With the success of down streaming task using English pre-trained language model, the pre-trained Chinese language model is also necessary to get a better performance of Chinese NLP task. Unlike the English language, Chinese has its special characters such as glyph information. So in this article, we propose the Chinese pre-trained language model StyleBERT which incorporate the following embedding information to enhance the savvy of language model, such as word, pinyin, five stroke and chaizi. The experiments show that the model achieves well performances on a wide range of Chinese NLP tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2631756806
source Freely Accessible Journals
subjects English language
Language
title StyleBERT: Chinese pretraining by font style information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T01%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=StyleBERT:%20Chinese%20pretraining%20by%20font%20style%20information&rft.jtitle=arXiv.org&rft.au=Lv,%20Chao&rft.date=2022-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2631756806%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631756806&rft_id=info:pmid/&rfr_iscdi=true