Finite groups admitting a coprime automorphism satisfying an additional polynomial identity
It is known that a finite group with an automorphism \(\varphi\) of coprime order has a soluble radical of \((|\varphi|,|C_G(\varphi)|)\)-bounded Fitting height and index. We extend this classic result as follows. Let \(f(x) = a_0 + a_1 \cdot x + \cdots + a_d \cdot x^d \in \mathbb{Z}[x]\) be a primi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Moens, Wolfgang Alexander |
description | It is known that a finite group with an automorphism \(\varphi\) of coprime order has a soluble radical of \((|\varphi|,|C_G(\varphi)|)\)-bounded Fitting height and index. We extend this classic result as follows. Let \(f(x) = a_0 + a_1 \cdot x + \cdots + a_d \cdot x^d \in \mathbb{Z}[x]\) be a primitive polynomial and let \(G\) be a finite group with an automorphism \(\varphi\) of coprime order satisfying \( g^{a_0} \cdot \varphi(g)^{a_1} \cdots \varphi^d(g)^{a_d} = 1 \), for all \(g \in G\). Then the soluble radical of \(G\) has \((d,|C_G(\varphi)|)\)-boundex Fitting height and index. The bounds are made explicit and are particularly good for small values of the degree \(d\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2631755543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631755543</sourcerecordid><originalsourceid>FETCH-proquest_journals_26317555433</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheEgCBbtHQKuhZqY1r0oHsCdixJsqlOaTMxMFr29RTyAq_cvvrcQhdJ6vzselFqJkmioqkrVjTJGF-J-gQDs5DNhjiRt54EZwlNa-cCYwDtpM6PHFF9AXpJloH76ijDzDhgw2FFGHKeAHuaEzgUGnjZi2duRXPnbtdhezrfTdRcTvrMjbgfMaT5Tq2q9b4wxB63_Ux8zykSB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631755543</pqid></control><display><type>article</type><title>Finite groups admitting a coprime automorphism satisfying an additional polynomial identity</title><source>Free E- Journals</source><creator>Moens, Wolfgang Alexander</creator><creatorcontrib>Moens, Wolfgang Alexander</creatorcontrib><description>It is known that a finite group with an automorphism \(\varphi\) of coprime order has a soluble radical of \((|\varphi|,|C_G(\varphi)|)\)-bounded Fitting height and index. We extend this classic result as follows. Let \(f(x) = a_0 + a_1 \cdot x + \cdots + a_d \cdot x^d \in \mathbb{Z}[x]\) be a primitive polynomial and let \(G\) be a finite group with an automorphism \(\varphi\) of coprime order satisfying \( g^{a_0} \cdot \varphi(g)^{a_1} \cdots \varphi^d(g)^{a_d} = 1 \), for all \(g \in G\). Then the soluble radical of \(G\) has \((d,|C_G(\varphi)|)\)-boundex Fitting height and index. The bounds are made explicit and are particularly good for small values of the degree \(d\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Group theory ; Polynomials</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Moens, Wolfgang Alexander</creatorcontrib><title>Finite groups admitting a coprime automorphism satisfying an additional polynomial identity</title><title>arXiv.org</title><description>It is known that a finite group with an automorphism \(\varphi\) of coprime order has a soluble radical of \((|\varphi|,|C_G(\varphi)|)\)-bounded Fitting height and index. We extend this classic result as follows. Let \(f(x) = a_0 + a_1 \cdot x + \cdots + a_d \cdot x^d \in \mathbb{Z}[x]\) be a primitive polynomial and let \(G\) be a finite group with an automorphism \(\varphi\) of coprime order satisfying \( g^{a_0} \cdot \varphi(g)^{a_1} \cdots \varphi^d(g)^{a_d} = 1 \), for all \(g \in G\). Then the soluble radical of \(G\) has \((d,|C_G(\varphi)|)\)-boundex Fitting height and index. The bounds are made explicit and are particularly good for small values of the degree \(d\).</description><subject>Automorphisms</subject><subject>Group theory</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy0EKwjAQheEgCBbtHQKuhZqY1r0oHsCdixJsqlOaTMxMFr29RTyAq_cvvrcQhdJ6vzselFqJkmioqkrVjTJGF-J-gQDs5DNhjiRt54EZwlNa-cCYwDtpM6PHFF9AXpJloH76ijDzDhgw2FFGHKeAHuaEzgUGnjZi2duRXPnbtdhezrfTdRcTvrMjbgfMaT5Tq2q9b4wxB63_Ux8zykSB</recordid><startdate>20220221</startdate><enddate>20220221</enddate><creator>Moens, Wolfgang Alexander</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220221</creationdate><title>Finite groups admitting a coprime automorphism satisfying an additional polynomial identity</title><author>Moens, Wolfgang Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26317555433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Group theory</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Moens, Wolfgang Alexander</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moens, Wolfgang Alexander</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Finite groups admitting a coprime automorphism satisfying an additional polynomial identity</atitle><jtitle>arXiv.org</jtitle><date>2022-02-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>It is known that a finite group with an automorphism \(\varphi\) of coprime order has a soluble radical of \((|\varphi|,|C_G(\varphi)|)\)-bounded Fitting height and index. We extend this classic result as follows. Let \(f(x) = a_0 + a_1 \cdot x + \cdots + a_d \cdot x^d \in \mathbb{Z}[x]\) be a primitive polynomial and let \(G\) be a finite group with an automorphism \(\varphi\) of coprime order satisfying \( g^{a_0} \cdot \varphi(g)^{a_1} \cdots \varphi^d(g)^{a_d} = 1 \), for all \(g \in G\). Then the soluble radical of \(G\) has \((d,|C_G(\varphi)|)\)-boundex Fitting height and index. The bounds are made explicit and are particularly good for small values of the degree \(d\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2631755543 |
source | Free E- Journals |
subjects | Automorphisms Group theory Polynomials |
title | Finite groups admitting a coprime automorphism satisfying an additional polynomial identity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Finite%20groups%20admitting%20a%20coprime%20automorphism%20satisfying%20an%20additional%20polynomial%20identity&rft.jtitle=arXiv.org&rft.au=Moens,%20Wolfgang%20Alexander&rft.date=2022-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2631755543%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631755543&rft_id=info:pmid/&rfr_iscdi=true |